
 1

BTF linking and deduplication in the
Linux kernel using the toolchain

Nick Alcock <nick.alcock@oracle.com>

 2

 3

CTF is becoming BTF++
● The GNU toolchain can already generate CTF and BTF

directly (like it can DWARF)
● GNU ld will gain the ability to read in both and dedup

them together, using machinery in libctf
● CTFv3 is similar to BTF but not identical
● Why not make CTF identical to BTF?
● https://www.esperi.org.uk/~oranix/2024-cauldron.pdf

 4

CTF as a BTF superset
● We can’t quite make it identical
● CTF has some things (like the ability to associate

types with ELF symbols, or the ability to represent
multigigabyte types) that BTF doesn’t have and
likely won’t ever want

● But we can make it close enough that they use the
same type section and all the same header fields:
CTF just has a few more

 5

BTF dedup made easier
● If GNU ld can deduplicate BTF... why do we

need a deduplicator in pahole? GNU ld (and
other related simple tooling, see later) can do
the same job and hand the result off to pahole:
no need to generate DWARF, faster compiles,
and one less deduplicator to maintain

 6

The current approach

.o files built with -g

Link with ld

module .ko with DWARF

Conversion to BTF by pahole

Dedupped BTF in modules, special section etc

 7

The current CTF approach
.o files built with -gctf

Link and dedup with ld

N .ctf files, plus core kernel .o

module .ko with CTF

Strip out CTF with objcopy and linker script

Second-stage dedup with ctfarchive

Dedupped CTF in vmlinux.ctfa,
core kernel is a special "module" named vmlinux

 8

ctfarchive
● Two-round linker (using the same deduplicator

as GNU ld): ~300 lines not counting comments
● Round 1: dedup each module, fusing all TUs

into one, marking all conflicting types as
hidden

● Round 2: dedup all modules and the core
kernel against each other

 9

Doing this with BTF
● Using the same methods:

● Generate BTF instead of CTF (still using the toolchain);
● Dedup it with ld and ctfarchive (renamed to btfarchive);
● Emit the BTF into similar archives
● Hand them off to pahole for further decoration and

incorporation into the kernel
● pahole would not need to do any dedup or read DWARF. (If it

needs DWARF for other reasons, maybe we can smuggle
that in via the BTF too!). It could put the BTF exactly where it
does now.

 10

Why bother?
● Conflicting types detected and recorded reliably,

though consumers need adjusting to use those
types

● Types used by modules you don’t care about don’t
even need to be loaded

● Types may move to the shared parent or disappear
but otherwise never move, even when the kernel is
reconfigured

● But consumers suddenly need to know about
archives of types. This might not be ideal... so...

 11

Simpler approaches!
Drop conflicting types

This would speed up ctfarchive: all types
depending on conflicting types would also be
dropped (or point at stubs?)

 12

Simpler approaches!
Drop CTF archives

btfarchive would write out a bunch of individual
dicts to... somewhere (a new subdirectory?)
and tell pahole where they were (we’d want a
way to indicate that a file of BTF is a parent
versus a child, but that’s a good idea anyway:
maybe just the filename?)

 13

Simpler approaches!
Drop the special vmlinux “module”
Instead, we’d put all the kernel types into the
shared dict, even if not used by any modules
(roughly doubling its size, but you usually need
those types anyway)

 14

Simpler approaches!
Drop built-in modules

● This simplest approach of all treats modules built
in to the core kernel as if they were in the core
kernel too (so types move around if you compile a
module into the kernel).

● This has unfortunate implications for any types
with conflicting definitions in those modules:
combined with earlier simplifications this means all
those types disappear!

 15

Simpler approaches!

Put all the above simplifications together and I
think you get exactly what you have now: a pile
of BTF with one set of types per input module,
dedupped against one big set for the object
files included in vmlinux.[oa], except they’re
already dedupped BTF so pahole doesn’t need
to do any of that.

 16

Format ossification?
● Binutils release cadence: 2/yr; dwarves release cadence:

whenever needed, but this seems to be less often
● Backporting libctf changes should be easy, as long as you

stay beyond the CTFv4 boundary (CTFv4 changes nearly
every line). I will backport all relevant changes into the
relevant (2.44?) release branch.

● Many distros release binutils from that branch anyway
● ld will automatically pick these up if it is dynamically linked

against libctf (RHEL is not :()
● libctf is GPLv3 right now but should be LGPL in the near

futuref, so lld etc can use it too

 17

What do we need from BTF?
● We need to be able to read BTF from more

than one kernel version, because binutils is not
part of the kernel

● So when BTF changes format or semantics in
backwardly-incompatible ways, please bump
the format version in the header.

● That’s all!

 18

Obscure edge benefits of CTFv4
● The superset format may have things you can use in BTF for

userspace or something like that (I can talk about them for
hours and hours if you want details):
● We can detect if you import the wrong parent dict (new

header field)
● We can represent static-scope variables (coming to BTF

too!)
● We can associate ELF symbols with types efficiently,

including when sparse and in child dicts
● We can encode much larger types (2^64 bytes, 2^32 vlen)

 19

Far-out future possibilities
● Unlike older CTF versions, BTF can support arbitrarily

deep nesting of split BTF: children can have other
children of their own!

● So (with the addition of one field in the header to say
which file a piece of BTF is a child of), we could have a
three-level tree: core kernel, modules, then per-
translation unit BTF with conflicting types in it!

● Clients would have to adapt, but it would mean we lose
no information at all about the input type system!

 20

Links and thank you
● More on the deduplicator: https://lpc.events/eve

nt/7/contributions/725/
● More on CTF in general (old, but not

inaccurate): https://lwn.net/Articles/795384/
● Thank you for listening!

https://lpc.events/event/7/contributions/725/
https://lpc.events/event/7/contributions/725/
https://lwn.net/Articles/795384/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

BTF linking and deduplication in the Linux kernel using the toolchain

Nick Alcock <nick.alcock@oracle.com>

CTF is becoming BTF++

		The GNU toolchain can already generate CTF and BTF directly (like it can DWARF)

		GNU ld will gain the ability to read in both and dedup them together, using machinery in libctf

		CTFv3 is similar to BTF but not identical

		Why not make CTF identical to BTF?

		https://www.esperi.org.uk/~oranix/2024-cauldron.pdf

CTF as a BTF superset

		We can’t quite make it identical

		CTF has some things (like the ability to associate types with ELF symbols, or the ability to represent multigigabyte types) that BTF doesn’t have and likely won’t ever want

		But we can make it close enough that they use the same type section and all the same header fields: CTF just has a few more

BTF dedup made easier

		If GNU ld can deduplicate BTF... why do we need a deduplicator in pahole? GNU ld (and other related simple tooling, see later) can do the same job and hand the result off to pahole: no need to generate DWARF, faster compiles, and one less deduplicator to maintain

The current approach

The current CTF approach

ctfarchive

		Two-round linker (using the same deduplicator as GNU ld): ~300 lines not counting comments

		Round 1: dedup each module, fusing all TUs into one, marking all conflicting types as hidden

		Round 2: dedup all modules and the core kernel against each other

Doing this with BTF

		Using the same methods:

		Generate BTF instead of CTF (still using the toolchain);

		Dedup it with ld and ctfarchive (renamed to btfarchive);

		Emit the BTF into similar archives

		Hand them off to pahole for further decoration and incorporation into the kernel

		pahole would not need to do any dedup or read DWARF. (If it needs DWARF for other reasons, maybe we can smuggle that in via the BTF too!). It could put the BTF exactly where it does now.

Why bother?

		Conflicting types detected and recorded reliably, though consumers need adjusting to use those types

		Types used by modules you don’t care about don’t even need to be loaded

		Types may move to the shared parent or disappear but otherwise never move, even when the kernel is reconfigured

		But consumers suddenly need to know about archives of types. This might not be ideal... so...

Simpler approaches!

Drop conflicting types

This would speed up ctfarchive: all types depending on conflicting types would also be dropped (or point at stubs?)

Simpler approaches!

Drop CTF archives

btfarchive would write out a bunch of individual dicts to... somewhere (a new subdirectory?) and tell pahole where they were (we’d want a way to indicate that a file of BTF is a parent versus a child, but that’s a good idea anyway: maybe just the filename?)

Simpler approaches!

Drop the special vmlinux “module”

Instead, we’d put all the kernel types into the shared dict, even if not used by any modules (roughly doubling its size, but you usually need those types anyway)

Simpler approaches!

Drop built-in modules

		This simplest approach of all treats modules built in to the core kernel as if they were in the core kernel too (so types move around if you compile a module into the kernel).

		This has unfortunate implications for any types with conflicting definitions in those modules: combined with earlier simplifications this means all those types disappear!

Simpler approaches!

Put all the above simplifications together and I think you get exactly what you have now: a pile of BTF with one set of types per input module, dedupped against one big set for the object files included in vmlinux.[oa], except they’re already dedupped BTF so pahole doesn’t need to do any of that.

Format ossification?

		Binutils release cadence: 2/yr; dwarves release cadence: whenever needed, but this seems to be less often

		Backporting libctf changes should be easy, as long as you stay beyond the CTFv4 boundary (CTFv4 changes nearly every line). I will backport all relevant changes into the relevant (2.44?) release branch.

		Many distros release binutils from that branch anyway

		ld will automatically pick these up if it is dynamically linked against libctf (RHEL is not :()

		libctf is GPLv3 right now but should be LGPL in the near futuref, so lld etc can use it too

What do we need from BTF?

		We need to be able to read BTF from more than one kernel version, because binutils is not part of the kernel

		So when BTF changes format or semantics in backwardly-incompatible ways, please bump the format version in the header.

		That’s all!

Obscure edge benefits of CTFv4

		The superset format may have things you can use in BTF for userspace or something like that (I can talk about them for hours and hours if you want details):

		We can detect if you import the wrong parent dict (new header field)

		We can represent static-scope variables (coming to BTF too!)

		We can associate ELF symbols with types efficiently, including when sparse and in child dicts

		We can encode much larger types (2^64 bytes, 2^32 vlen)

Far-out future possibilities

		Unlike older CTF versions, BTF can support arbitrarily deep nesting of split BTF: children can have other children of their own!

		So (with the addition of one field in the header to say which file a piece of BTF is a child of), we could have a three-level tree: core kernel, modules, then per-translation unit BTF with conflicting types in it!

		Clients would have to adapt, but it would mean we lose no information at all about the input type system!

Links and thank you

		More on the deduplicator: https://lpc.events/event/7/contributions/725/

		More on CTF in general (old, but not inaccurate): https://lwn.net/Articles/795384/

		Thank you for listening!

 .o files built with -gctf

 Link and dedup with ld

 N .ctf files, plus core kernel .o

 module .ko with CTF

 Strip out CTF with objcopy and linker script

 Second-stage dedup with ctfarchive

 Dedupped CTF in vmlinux.ctfa,
 core kernel is a special "module" named vmlinux

 .o files built with -g

 Link with ld

 module .ko with DWARF

 Conversion to BTF by pahole

 Dedupped BTF in modules, special section etc

.o files built with -gctf

Link and dedup with Id

module ko with CTF

Strip out CTF with objcopy and linker scrip

N .ctf files, plus core kernel .o

Second-stage dedup with ctfarchive

Dedupped CTF in vmlinux.ctfa,

core kernel is a special "module” named vmlinux

.o files built with -g

Link with Id

module ko with DWARF

Conversion to BTF by pahole

Dedupped BTF in modules, special section etc

CTF is becoming BTF++

The GNU toolchain can already generate CTF and BTF
directly (jike it can DWARF)

GNU Id will gain the ability to read in both and dedup
them together, using machinery in libctf

CTFv3is similar to BTF but not identical
Why not make CTF identical to BTF?
https://iwww.esperi.org.uk/~oranix/2024-cauldron.pdf

