


Tooling for semantic probing 
based on BPF and kernel 

tracing
dr. Kris Van Hees

kris.van.hees@oracle.com
Linux Engineering

Oracle

mailto:kris.van.hees@oracle.com


Agenda

• What are we doing…
• Why we are doing it...
• How are we doing it...
• Opportunities and issues
• Probing kernel functions: issues
• Probing tracepoints: issues
• Where to find more information...



What are we doing...

• Kernel provides great tracing features:
– kprobes, uprobes
– ftrace
– tracepoints
– BPF

• Great building blocks
• Very specific (some more than others)

Semantic probing is to kernel tracing features (probes)
what high-level libraries are to C library functions



What are we doing... (cont.)

• DTrace provides a documented set of providers with semantic probes
– proc
– sched
– io
– lockstat
– ip, tcp, udp
– profile (and tick)



Why are we doing it...

• Main features:
– Well-defined names for semantic events
– Well-defined probe arguments

• Hiding (from the user) any dependency on:
– Architecture
– Device features
– Implementation details
– Kernel version

• And sometimes synthesizing multiple events into one semantic one



How are we doing it...

• Define the set of semantic probes
– Easy for DTrace: already done when DTrace was first developed

• Figure out how to:
– Ensure that the semantic event is reported as a probe firing when needed
– Ensure that we can populate the necessary argument values



How are we doing it... (cont.)

• Probe: io:::done (fires when an I/O request completes)
– Requires triggering from multiple locations (and depends on kernel):

● rawtp:block::block_bio_queue
● rawtp:nfs::nfs_initiate_read (kernel >= 5.6.0)
● fbt:nfs:nfs_initiate_read:entry (kernel <= 5.5.19)
● rawtp:nfs::nfs_initiate_write (kernel >= 5.6.0)
● fbt:nfs:nfs_initiate_write:entry (kernel <= 5.5.9)

– NFS requests do not have a bio like other I/O requests do
● we create a fake one.



How are we doing it... (cont.)

• Probe: io:::wait-done (fires when done waiting for an I/O request to complete)
– Requires multiple probes:

● fbt::submit_bio_wait:entry
–Record pointer to bio in a TLS variable

● fbt::submit_bio_wait:return
–Retrieve pointer to bio (and delete TLS variable)

● For XFS, we need a different probe (just one):
– rawtp:xfs::xfs_buf_iowait_done

● But that needs a fake bio



Opportunities and issues

• Lots of opportunity for common code
• Perfect scenario for pre-compiled BPF code

– GCC and binutils BPF support has been crucial for this
– DTrace also has a built-in compiler (D to BPF)
– DTrace has a custom linker (link dynamically compiled code with pre-compiled 

code)

• Sadly, BPF does not provide a good way (that I have found) to share functions 
between BPF programs
– Would be very useful here
– Should be possible if the functions can be verified based on their type data



Opportunities and issues (cont.)

• More generic code can be challenging for BPF
• Makes toolchain use more challenging

– Balance between convenience and what works

• BPF verifier must be able to guarantee that the code is safe
– Add hints (conditionals) to ensure the verifier knows what the boundaries are
– Compiler optimization may remove those
– Loops are still a challenge
– Stack use can pose unpleasant surprises

● 1024 bytes is a really low limit!



Opportunities and issues (cont.)

• Custom compiler (self-contained)
– D as source “language”
– All compilation done on-the-fly (no objects stored)

• Custom linker
– Linking on-the-fly compiled code with pre-compiled code (GCC / binutils)
– Need to do a lot of relocation resolving

● Various data items cannot be known until the final BPF program is constructed
● Pre-compiled common code often needs those data items

A lot of going back to the basics of toolchain development!



Probing kernel functions: issues

• kprobe/kretprobe:
– Hard to know which functions can be probed

● Trial-and-error is very slow
– Need to retrieve arguments yourself

• fentry/fexit:
– Much more dependable
– Faster
– But still with limitations



Probing kernel functions: issues (cont.)

• Accessing pass-by-value struct arguments
– Did not work for trampoline-based tracing probes (fentry)
– Support was added for x86_64, and perhaps now also arm64
– Still no general support for this
– If there is no support, the BPF verifier rejects the program

● Less user friendly than I’d like

• Possible solutions involve getting to the arguments ourselves
– Implementation (and architecture) dependent
– May run unto other BPF verifier complaints



Probing tracepoints: issues

• Tracepoints are a great source for semantic tracing
• They tend to move with the source code in new versions (convenient!)
• A few have > 10 arguments, which BPF does not support

• Accessing extra arguments is tricky:
– Highly dependent on the calling mechanism for tracepoints
– May be architecture dependent as well

• Unclear on whether it is worth it
– Only 54 tracepoints out of 1893 have > 10 arguments



Where to find more information...

• DTrace for Linux
– GitHub: https://github.com/oracle/dtrace-utils.git
– Mailing list: dtrace@lists.linux.dev

Thank you!

https://github.com/oracle/dtrace-utils.git
mailto:dtrace@lists.linux.dev



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

