
BPF Support in the GNU Toolchain

David Faust Cupertino Miranda

Oracle

Linux Plumbers Conference 2024
September 18-20 | Vienna

Outline

Status
Recent work in binutils
Recent work in GCC
Kernel selftests

Discussion Topics

Discussion Topics: Future Works

Status

Major Milestone

I Compile all kernel selftests
I ... and pass most of them
I Compile DTrace, systemd, others

Status

Availability and Adoption

Distro availability:
- Oracle Linux cross-gcc, cross-binutils

- Debian gcc-bpf, binutils-bpf

- Gentoo sys-devel/bpf-toolchain

- Fedora cross-gcc, cross-binutils

- and derivatives
Projects building with GCC BPF:

- DTrace
- systemd
- bpftune
- ...

Status

Availability and Adoption

Distro availability:
- Oracle Linux cross-gcc, cross-binutils

- Debian gcc-bpf, binutils-bpf

- Gentoo sys-devel/bpf-toolchain

- Fedora cross-gcc, cross-binutils

- and derivatives
Projects building with GCC BPF:

- DTrace
- systemd
- bpftune
- ...

Status

Recent work in binutils

Outline

Status
Recent work in binutils
Recent work in GCC
Kernel selftests

Discussion Topics

Discussion Topics: Future Works

Status

Recent work in binutils

New Instructions

I Support for all CPU v4 instructions:
I Unconditional byte swapping instructions (bswap{16,32,64})
I Long gotos with 32-bit target displacement (jal)
I Signed memory load instructions (ldsxw,...)
I Signed register moves (smov,...)
I Signed division and modulus (sdiv, smod,...)

I Support for relaxation with v4 instructions:
I ja disp16 -> jal disp32
I jxx disp16 -> jxx +1; ja +1; jal disp32
I Option -m[no-]relax, enabled by default

Status

Recent work in binutils

Immediate Overflows

Consolidated handling of immediate overflow to work the same
between GAS and LLVM BPF assembler
I For an immediate field of N bits, any written number whose

two’s complement encoding fits in N bits is accepted
I e.g. -2 is the same as 0xfffffffe
I Up to the instruction to decide how to interpret the value
I Do not relax immediate fields in jump instructions; relax to

jumps with wider range only when expressions are involved

Status

Recent work in binutils

ELF Header Flags

Add ELF_BPF_CPUVER bits in the ELF machine-dependent header
flags
I Encode the BPF CPU version for which the object file has

been compiled
I A value of zero indicates “use latest supported version”
I Disassembler honors flags and uses appropriate ISA version if

user did not specify on command line

$ readelf -h foo.o.bpf
ELF Header:

...
Flags: 0x4, CPU Version: 4

Status

Recent work in GCC

Outline

Status
Recent work in binutils
Recent work in GCC
Kernel selftests

Discussion Topics

Discussion Topics: Future Works

Status

Recent work in GCC

Assorted Changes and Improvements

I Compiler-shipped bpf-helpers.h workaround file has been
removed!

I Complete BPF CO-RE implementation
I Generate BTF by default with -g for BPF target
I Emit pseudo-C asm syntax by default :(

I Necessary due to inline asm prevalence in kernel BPF headers

I Inline __builtin_{memmove,memcpy,memset} into
verifier-friendly sequences

Status

Recent work in GCC

BPF Feature Macros

GCC now defines BPF feature macros used in existing programs:
I __BPF_CPU_VERSION__ (1, 2, 3, 4)
I Enabled with -mcpu=v3 or higher:

__BPF_FEATURE_ALU32 -m[no-]alu32
__BPF_FEATURE_JMP32 -m[no-]jmp32
__BPF_FEATURE_JMP_EXT -m[no-]jmp-ext
__BPF_FEATURE_BSWAP -m[no-]bswap
__BPF_FEATURE_SDIV_SMOD -m[no-]sdiv
__BPF_FEATURE_MOVSX -m[no-]smov

I Enabled with -mcpu=v4 or higher:
__BPF_FEATURE_LDSX
__BPF_FEATURE_GOTOL
__BPF_FEATURE_ST

Status

Recent work in GCC

BTF Pruning: Context

selftests/bpf/progs/bpf_loop.c

GCC

$ objdump -h -j.BTF
Sections:
Idx Name Size

6 .BTF 00099c47

$ bpftool btf dump
...
[8766] DATASEC ‘license’

clang

Sections:
Idx Name Size
11 .BTF 00000ce8

...
[56] DATASEC ‘license’

???

Status

Recent work in GCC

BTF Pruning

-g[no-]prune-btf
I Prune BTF prior to emission, same algorithm as clang:

I Start from only types actually used in the program
I Avoid chasing pointers to struct/union types if otherwise

unused

I Enabled by default for BPF target with -g
I Give users choice of “clang-like” or “pahole-like” BTF:

I clang: prune: minimal BTF to load and run program
I pahole: no-prune: translate DWARF to BTF

I GCC supports generating BTF for all targets

Status

Kernel selftests

Outline

Status
Recent work in binutils
Recent work in GCC
Kernel selftests

Discussion Topics

Discussion Topics: Future Works

Status

Kernel selftests

Kernel Selftests

453/3446 PASSED, 92 SKIPPED, 102 FAILED
I Missing type_tag and decl_tag in GCC
I Valid code patterns not understood by verifier
I Bleeding-edge BPF features not yet implemented

Discussion Topics

Outline

Status
Recent work in binutils
Recent work in GCC
Kernel selftests

Discussion Topics

Discussion Topics: Future Works

Discussion Topics

BPF CI with GCC

I Catch new testsuite additions accidentally relying on
compiler-specific features or behaviors

I For now: compile only
I Once all selftests pass: run

Discussion Topics

BPF Memory Model

WIP in both GCC and LLVM
I __atomic_X builtins accept a memory order argument
I For relaxed ordering, if return value unused, use lock insn
I BTF for _Atomic

I BTF_KIND_ATOMIC to behave as cv-qual ?
I GCC currently ignores _Atomic when generating BTF

I LLVM patches: https://github.com/llvm/llvm-project/pull/107343

I GCC tracking PR: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116717

https://github.com/llvm/llvm-project/pull/107343
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116717

Discussion Topics

DWARF BTF Tags: Pending Format

int __tag1 __tag2 x;
int __tag1 y;

variable

AT_name "y"

AT_type

base_type

AT_name "int"

annotation

AT_name "btf_type_tag"

AT_const_value "tag1"

variable

AT_name "x"

AT_type

base_type

AT_name "int"

annotation

AT_name "btf_type_tag"

AT_const_value "tag1"

annotation

AT_name "btf_type_tag"

AT_const_value "tag2"

I Wasteful!
I Room to improve; blocker for GCC patches

Discussion Topics

DWARF BTF Tags: Proposal

I Add new DW_AT_annotation in addition to
DW_TAG_annotation

I Holds a reference to annotation DIE for that item, if any
I Annotation DIEs may be chained by additional

AT_annotation
I Can reuse (sub-)chains of annotations

Discussion Topics

DWARF BTF Tags: Proposal

int * __tag1 p;

variable

AT_name "p"

AT_type

pointer_type

AT_type

AT_annotation

base_type

AT_name "int"

annotation

AT_name "btf_type_tag"

AT_const_value "tag1"

Discussion Topics

DWARF BTF Tags: Proposal

int __tag1 __tag2 x;
int __tag1 y;

variable

AT_name "x"

AT_type

base_type

AT_name "int"

AT_annotation

annotation

AT_name "btf_type_tag"

AT_const_value "tag2"

AT_annotation

variable

AT_name "y"

AT_type

base_type

AT_name "int"

AT_annotation

annotation

AT_name "btf_type_tag"

AT_const_value "tag1"

I Annotations can be shared and reused

Discussion Topics

DWARF BTF Tags: Proposal

int __tag1 __tag2 x;
struct S __tag1 __tag2 * __tag1 ...

variable

AT_name "x"

AT_type

base_type

AT_name "int"

AT_annotation

annotation

AT_name "btf_type_tag"

AT_const_value "tag2"

AT_annotation

pointer_type

AT_type

AT_annotation

annotation

AT_name "btf_type_tag"

AT_const_value "tag1"

struct

AT_annotation

I Ordering is preserved

Discussion Topics

DWARF BTF Tags: Proposal

I Still safe for consumers unaware of extension
I No objections from GCC DWARF maintainers
I Preserves ordering of tags
I Opinions?

Discussion Topics

CO-RE (in GCC)

I GCC CO-RE implementation on par with clang
I GCC builtins have different prototypes (abstracted in

bpf_core_read.h)
I #pragma clang attribute push ... not supported

I correct bpftool to properly attribute structs

I Possible next steps for CO-RE

Discussion Topics

CO-RE (clang example)

Input
struct Q {

int x;
int y;

} __attribute__((preserve_access_index));

struct P {
struct Q qs[10];

} __attribute__((preserve_access_index));

void
bar (struct P *p, int i)
{
p->qs[i].y = 6;

}

clang
bar:

r3 = 0x0
CO-RE <byte_off> [2] struct P::qs (0:0)
r1 += r3
w2 = w2
r2 «= 0x20
r2 s»= 0x20
r2 «= 0x3 % multiplication by 8
r1 += r2
w2 = 0x2a
*(u32 *)(r1 + 0x4) = w2
CO-RE <byte_off> [3] struct Q::y (0:1)
exit

Compiler explorer link: https://godbolt.org/z/7Gec6xeTG

Discussion Topics

CO-RE (gcc vs. clang)

gcc
bar:

r2 = (s32) r2
.L3:
r0 = 8 ll
% CO-RE <sizeof> struct Q

.L4:
r3 = 0 ll
% CO-RE <byte_off> struct P::qs (0:0)
r0 *= r2
r1 += r3

.L5:
r4 = 4 ll
r1 += r4
r1 += r0
*(u32 *) (r1+0) = 42
% CO-RE <byte_off> struct Q::y (0:1)
exit

clang
bar:

r3 = 0x0
CO-RE <byte_off> [2] struct P::qs (0:0)
r1 += r3
w2 = w2
r2 «= 0x20
r2 s»= 0x20
r2 «= 0x3 % multiplication by 8
r1 += r2
w2 = 0x2a
*(u32 *)(r1 + 0x4) = w2
CO-RE <byte_off> [3] struct Q::y (0:1)
exit

I gcc is allowing non constant indexing of arrays using a sizeof CO-RE reloc.
I What about enum indexing?

Discussion Topics

Verifier and PTR to CTX restrictions

SEC("iter/task_vma")
int get_vma_offset(struct bpf_iter__task_vma *ctx) {

struct vm_area_struct *vma = ctx->vma;
struct seq_file *seq = ctx->meta->seq;
struct task_struct *task = ctx->task;

if (task == NULL || vma == NULL)
return 0;

... }

reg type unsupported for arg#0 function get_vma_offset#8723
0: R1=ctx() R10=fp0
0: (18) r0 = 0x10 ; R0_w=16
2: (bf) r2 = r1 ; R1=ctx() R2_w=ctx()
3: (0f) r2 += r0 ; R0_w=16 R2_w=ctx(off=16)
4: (79) r0 = *(u64 *)(r1 +8) ; R0_w=ptr_or_null_task_struct(id=1) R1=ctx();
5: (15) if r0 == 0x0 goto pc+21 ; R0_w=ptr_task_struct()
6: (79) r2 = *(u64 *)(r2 +0)
dereference of modified ctx ptr R2 off=16 disallowed

I Is clang representing verifier restrictions?
I Can the verifier relax these rules?

Discussion Topics: Future Works

Outline

Status
Recent work in binutils
Recent work in GCC
Kernel selftests

Discussion Topics

Discussion Topics: Future Works

Discussion Topics: Future Works

BTF support in toolchain

Kernel BTF build relies on pahole translating DWARF to BTF,
introduces dependency on DWARF:

All information expressed in BTF shall be conveyable in
standard DWARF or deducible from some source available to
pahole

Discussion Topics: Future Works

BTF for kernel: now

+--------+ BTF BTF +----------+
| pahole |-------> vmlinux.btf ------->| verifier |
+--------+ +----------+

^ ^
| |

DWARF | BTF |
| |

vmlinux +-------------+
module1.ko | BPF program |
module2.ko +-------------+

...

Discussion Topics: Future Works

Removing DWARF dependency for kernel BTF

All information expressed in BTF shall be conveyable in standard
DWARF or deducible from some source available to pahole

This is problematic because:
1. DWARF is difficult to extend without breaking it
2. Proper additions to DWARF shall be done through the

standard
3. Coupling of the two formats is gratuitous
4. DWARF for kernel is hundreds of MiB (at least)

Discussion Topics: Future Works

Toolchain BTF support

I Support merging and deduplicating BTF in the linker
I GNU ld already supports merging and deduplication for CTF;

could be extended to merge and deduplicate BTF also
I Then: skip DWARF, pahole amends toolchain-produced BTF

Discussion Topics: Future Works

BTF for kernel: next

+--------+ BTF’ BTF’ +----------+
| pahole |-------> vmlinux.btf ------->| verifier |
+--------+ +----------+

^ ^
| |

BTF | BTF |
| |

vmlinux +-------------+
module1.ko | BPF program |
module2.ko +-------------+

...

Discussion Topics: Future Works

Linking for BPF programs

I Already some static linking of BPF programs with libbpf
I Why not do it with toolchain proper?

Discussion Topics: Future Works

BPF, BTF and Rust

Updates from Rust-for-Linux meeting at Kangrejos earlier this
month:
I Most RfL people did not know about BTF until now
I BTF must reflect realized structs, after Rust compiler has

reordered
I RfL people said they would look into BTF, and to CO-RE
I Confirmed that ORC can be reverse-engineered from compiled

Rust, and it works
I CFI directives generated by Rust compiler are enough SFrame

also

Discussion Topics: Future Works

Approaches for compiling for verified targets

1. Do nothing
2. Disable all optimizations
3. Disable some optimizations
4. Target counterpasses
5. Target driven pass tailoring
6. Language level support e.g. “must pragmas”
7. Assembler support

I LPC 2023 decided: some combination of 2-7
I We can start with 7, gas now has control flow graphs via SCFI

Discussion Topics: Future Works

32-bit sub-register support

Following compiler constraints agreed on at LSFMM; not yet
implemented
For immediates:

"i": imm64

"I": imm32

"O": off16

For registers:

Discussion Topics: Future Works

32-bit sub-register support

Following compiler constraints agreed on at LSFMM; not yet
implemented
For immediates:

"i": imm64

"I": imm32

"O": off16

For registers:

Discussion Topics: Future Works

32-bit sub-register support

"r": 64-bit register (rN) or 32-bit sub-register (wN), based on the
mode of the operand

If 32-bit arithmetic available:
I char, short -> wN and warning
I int -> wN
I long int -> rN

Else:
I char, short, int -> rN and warning
I long int -> rN

Discussion Topics: Future Works

32-bit sub-register support

"w": 32-bit sub-register (wN) regardless of the mode of the operand
If 32-bit arithmetic available:
I char, short -> wN and warning
I int -> wN
I long int -> wN and warning

Else:
I char, short, int, long int -> wN and warning

Discussion Topics: Future Works

32-bit sub-register support

"R": 64-bit register (rN) regardless of mode of operand
I char, short, int -> rN and warning
I long int -> rN

Discussion Topics: Future Works

Fast calls

__attribute__((bpf_fastcall))
I GCC: To-do https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116718

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116718

Discussion Topics: Future Works

Inclusion of system headers

I GCC provides standard headers e.g. stdint.h
I clang does not?
I Should harmonize both toolchains

	Status
	Recent work in binutils
	Recent work in GCC
	Kernel selftests

	Discussion Topics
	Discussion Topics: Future Works

