
1

Libabigail: Application Binary Interface analysis
using BTF, CTF and DWARF

Linux Plumbers Conference, Vienna 18-20 September 2024

Claudiu Zissulescu <claudiu.zissulescu-ianculescu@oracle.com>

Dodji Seketeli <dodji@redhat.com>

Outline of the talk

I. Introduction

II. Libabigail powers a set of tools

III.A re-usable library

IV.Supports multiple type information formats

V. Some timing information

VI.Questions / Discussions

Introduction

● Intended to:

– represent artifacts of Application Binary Interfaces of shared libraries
● Symbols, declarations, types

– Compare these artifacts
● Represent & analyze comparison results

– Emit meaningful change reports

– Operate from binaries (not source code)

● Started out by using

– ELF (obviously)

– DWARF
● Ubiquitous for binaries generated in Fedora & RHEL ecosystem

A library powering a set of tools

● ABIDIFF

– Compares exported declarations between two ELF binaries

– Report about their ELF symbols changes

– If binaries are accompanied by debug info then report about type changes

● ABIPKGDIFF

– Compares exported declarations between binaries embedded in two packages

– RPMs and Deb packages
● Supports DWZ DWARF compression

– Tarballs

● ABIDW

– Emits textual representation (ABIXML) of the ABI of a binary

● ABICOMPAT

– Test the ABI compatibility between an application an a shared library

● KMIDIFF

– Compares the kernel/module interface between two Linux kernel trees

● ABILINT

– Test if an ABIXML file can be loaded by the library

● External tools

– RPMINSPECT

– check-uapi.sh

A re-useable library

● Written in C++

● Around a central internal representation ...

abigail::ir::corpus

vector<var_decl*>& get_variables();
vector<function_decl*>& get_functions();

A re-useable library

Which represents declarations ...

var_decl

type_base* get_type();
elf_symbol* get_symbol();

decl_base

interned_string& get_name();
location& get_location();
scope* get_scope();

function_decl

function_type* get_type();
elf_symbol* get_symbol();

type_or_decl_base

A re-useable library

Which represents types ...

type_base

size_t get_size_in_bits();
size_t get_alignment_in_bits();

type_decl

enum_type_decl

enumerators& get_enumerators()
type_base* get_underlying_type();

function_type

parameters& get_parameters()
type_base* get_return_type_type();
bool is_variadic();

decl_base

interned_string& get_name();
location& get_location();
scope* get_scope();

type_or_decl_base

A re-useable library

Which represents diffs
between ABI artifacts ...

diff

type_or_decl_base* first_subject();
type_or_decl_base* second_subject();
bool has_changes();
void report();

enum_diff

enum_type_def* first_enum();
enum_type* second_enum();
bool has_changes();

type_diff_base

corpus_diff

corpus* first_corpus();
corpus* second_subject();
bool has_changes();
void report();

Supports multiple type information formats

● An ABI corpus is created by the implementation of a front-end interface:

abigail::fe_iface

corpus* read_corpus()

dwarf::reader

corpus* read_corpus()

btf::reader
corpus* read_corpus()

ctf::reader
corpus* read_corpus()

abixml::reader
corpus* read_corpus()

DWARF Front-end

● DWARF sports a high level of details

– Support all languages

– Every single translation unit of the binary is represented with:
● All its types (and declarations).

– Types defined in a header file are represented in all translation units that include it.
● A given type T is likely to be represented (duplicated) in all translation units

● Need to de-duplicate all types

– Across one binary
● When analyzing one binary

– abidw

– Across two binaries
● When comparing two binaries

– abidiff

– Across thousands binaries
● When analyzing a Linux kernel and its modules

– kmidiff

● Type de-duplication is done after creating the ABI corpus and before performing any comparison emitting an ABIXML.

BTF Front-end

● BTF available for the Linux kernel only

– Just C and BPF

– Much less information available than DWARF
● E.g, no line information.

● Types are de-duplicated

– Libabigail doesn’t have to perform type de-duplication after processing all

– Processing is much faster and smaller than DWARF.

CTF Front-end

● CTF available for C programs

– Emitted by GCC

– Much less information available than DWARF
● E.g, no line information.

● Types are de-duplicated

– Libabigail doesn’t have to perform type de-duplication after processing all

– Processing is much faster and smaller than DWARF.

– Faster than BTF.

Some timing information

● Using the kernel at sourceware.org/git/libabigail-tests.git

– Enterprise kernel with mode than 3000 modules

– Using the kmidiff tool

● Using the CTF front-end

– 30 seconds / 1,5GB of max resident memory size

● Using the BTF front-end

– 1m:16 secs / 2GB of max resident memory size

● Using the DWARF front-end

– 35 minutes / 8GB of max resident memory size

Discussions

● https://sourceware.org/libabigail

● https://sourceware.org/libabigail/apidoc/

● https://sourceware.org/libabigail/manual/

● irc://irc.oftc.net#libabigail

https://sourceware.org/libabigail
https://sourceware.org/libabigail/apidoc/
https://sourceware.org/libabigail/manual/

Thank you!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

