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Fraction of cycles spent in the kernel

● Data center applications spend significant % of cycles in the kernel



FDO (Feedback Directed Optimization)

● Leveraging runtime insights for improved compiler codegen 
● Core idea:

○ Gathers profiling data from real program executions
○ Uses this data to guide optimization decisions within the compiler
○ Focuses on optimizations that have the most impact based on actual usage

● Proved to be effective for real world applications: up to to 20% improvement
○ Better Icache, iTLB utilization
○ Better branch performance

● Instrumentation based and Sample based



iFDO (Instrumentation based FDO)

Pros: 
● Accurate profiles of the load tests
● No hardware PMU dependency
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Cons: 
● Instrumented binary is slow
● Needs kernel source support
● Maintain non-instrumentable file list
● Need representative load-tests



AutoFDO (Sample based FDO)

Pro: 
● Very low overhead profile collection
● Production Profiles –  Representative 
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Con: 
● Lower performance using load-tests
● Requires hardware LBR and perf support

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45290.pdf


Iterative release mode for AutoFDO
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LBR for AutoFDO & Propeller

● Intel LBR like hardware support 
● Offline tools to convert LBR data to profile

○ create_llvm_prof or llvm_profgen

LBR Entries:

SRC_ADDR_I   →  DST_ADDR_J

SRC_ADDR_A  → DST_ADDR_B

SRC_ADDR_P  → DST_ADDR_Q

SRC_ADDR_X  → DST_ADDR_Y

Ti
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Increment Ranges:
[ Y … P ],  [ Q … A ] , [ B … I]

Increment Jumps:

X → Y,   P → Q,  A → B, I → J 

AutoFDO Profile
Func:total_samples:head_samples
  Offset1: num_samples
  Offset2: num_samples

foo:42:9
 0: 8
 2: 10 bar:4
 7.2: 6
 30: goo:8
  1: 4
  5: boo:4
   2.1: 1
   2.2: 3
 41: 10

AMD
● Zen3: BRS
● Zen4: LBR-v2

ARM 
● ETM
● SPE

https://github.com/google/autofdo
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-profgen


List of optimizations that benefit from FDO

● Function inlining: 
○ Removing call overhead
○ Enlarging optimization scope that matters

● BasicBlock layout: increase branch fall-through
○ Fall-through is just more effective than taken even both correctly predicted
○ Fall-through groups more hot BBs together -- better i-cache utilization

● Indirect-call promotion (value profiling)
○ Reducing indirect-call and making inline possible

● Other optimizations:
○ Function layout
○ Machine function splitting
○ Scalar optimization, like speculative PRE
○ Loop nested optimization, like unrolling / peeling and vectorization
○ Partial inlining
○ Register allocation
○ ThinLTO
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Experiment results

Micro-Benchmarks:

Load-tests:
● Google database app: improves 2.6% with AutoFDO kernel, 2.9% with iFDO kernel
● Meta services: improves ~5% with AutoFDO kernel, ~6% with iFDO kernel



Kernel PMU stats for tcp_rr



Instruction heatmap comparison (tcp_rr)

ifdo ifdo + thinlto

autofdo + thinltoautofdo

nofdo

nofdo



AutoFDO kernel: lessons, challenges and TODOs

● Improve offline tools to support kernel
● Things to be done:

○ Apply unique linkage names for static functions
○ Module support

● Testing is most challenging
○ Fast and reliable performance test
○ Representative workloads

● Lessons:
○ AutoFDO is easy to use
○ System with sufficient load during profiling
○ Intel machine profile works well on AMD machines
○ Customized kernel helps the performance
○ Enable LTO / ThinLTO for better performance
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What is a post linker optimizer?
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Propeller in practice
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https://research.google/pubs/propeller-a-profile-guided-relinking-optimizer-for-warehouse-scale-applications/
https://research.google/pubs/propeller-a-profile-guided-relinking-optimizer-for-warehouse-scale-applications/
https://research.google/pubs/propeller-a-profile-guided-relinking-optimizer-for-warehouse-scale-applications/


Propeller - Cont'd

1. Pros
❏ Avoid disassembly 
❏ Scalable for distributed build systems, warehouse-scaled application ready

2. Cons
❏ Requires sources and needs to re-build the binary

3. Optimizations
❏ Basic block layout (details)
❏ Path cloning (details)
❏ Inter-procedure register allocation - work in progress (details)

https://groups.google.com/g/llvm-dev/c/ef3mKzAdJ7U/m/1shV64BYBAAJ
https://lists.llvm.org/pipermail/llvm-dev/2020-September/145357.html
https://github.com/sunxfancy/IPRA-exp


Propeller in Action
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Propeller on AutoFDO
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Additional Notes on Propeller

● Propeller and kernel modules
○ Currently, post linker optimizers work for executables and shared libraries.

○ Kernel modules are not executables nor shared libraries, they are relocatable objects.

○ Propeller is capable of optimizing kernel modules too.

● Propeller and unique static function names in kernels
○ “-funique-internal-linkage-names” cannot be used

● Propeller works well with iFDO, ThinLTO.



Additional Notes on Propeller - Cont’d

● AutoFDO profiles offer flexibility by tolerating:
○ Source code variations: Minor changes in the source code won't necessarily invalidate the profile.

○ Different build options: Slight adjustments to build settings can still be compatible with the 

profile.

● Propeller profiles has zero tolerance for source code or build settings changes
○ The source code and build settings must be identical to those used during profile generation.



Propeller - toolings and supported platforms

1. Requires github.com/google/autofdo
2. Requires Hardware support

a. On X86_64
i. LBR - INTEL Haswell (16-Entry LBR) or INTEL Skylake (32-Entry LBR) or later
ii. BRS - AMD Zen 3 EPYC
iii. LBR EXT V2 - AMD Zen 4

b. On Arm
i. Arm SPE
ii. Arm ETM 

Fully validated? Kernel Internal Applications
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https://github.com/google/autofdo


Instruction heatmap comparison (tcp_rr)
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Kernel PMU stats for tcp_rr



Current status

● Patches submitted for review

● Internally doing large scale production tests to measure the performance

● Investigating customized kernel based on specific workload

https://lore.kernel.org/lkml/20240728203001.2551083-1-xur@google.com/


Summary

● FDO improves kernel performance significantly
● AutoFDO can integrate with kernel build very well

○ Easier to deploy
○ Can be profilied from production
○ Get most of the iFDO performance or even better 

● Add Propeller to get best possible performance 



Thank you!


