
Optimizing the Linux Kernel using
 AutoFDO & Propeller

Rong Xu & Han Shen

Contributors: Sriraman Tallam Krzysztof Pszeniczny Xinliang (David) Li Luigi Rizzo Nick DeSaulniers

● Build kernel with FDO (iFDO and AutoFDO)
○ Overview
○ Experimental results

● Build kernel with AutoFDO and Propeller
○ Overview
○ Experimental results

● Build kernel with FDO (iFDO and AutoFDO)
○ Overview
○ Experimental results

● Build kernel with AutoFDO and Propeller
○ Overview
○ Experimental results

Fraction of cycles spent in the kernel

● Data center applications spend significant % of cycles in the kernel

FDO (Feedback Directed Optimization)

● Leveraging runtime insights for improved compiler codegen
● Core idea:

○ Gathers profiling data from real program executions
○ Uses this data to guide optimization decisions within the compiler
○ Focuses on optimizations that have the most impact based on actual usage

● Proved to be effective for real world applications: up to to 20% improvement
○ Better Icache, iTLB utilization
○ Better branch performance

● Instrumentation based and Sample based

iFDO (Instrumentation based FDO)

Pros:
● Accurate profiles of the load tests
● No hardware PMU dependency

Instrumentation
Build

Load
 Tests

Optimized
Build

Kernel
Sources

Instrumented
Kernel

iFDO
Profile

Optimized
Kernel Production

Cons:
● Instrumented binary is slow
● Needs kernel source support
● Maintain non-instrumentable file list
● Need representative load-tests

AutoFDO (Sample based FDO)

Pro:
● Very low overhead profile collection
● Production Profiles – Representative

“Perf” kernel : Same
codegen as non-
AutoFDO build with
extra debug info.

Build for
AutoFDO

(debug info)
Load Tests /
Production

Build with
AutoFDO
Profile

Kernel
Sources

“Perf”
Kernel

Raw
Perf
Data

Optimized
Kernel Production

AutoFDO
Profile

Con:
● Lower performance using load-tests
● Requires hardware LBR and perf support

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45290.pdf

Iterative release mode for AutoFDO

Kernel
Sources

V1
Build with
Debug Info

“Perf”
Kernel Production

Profiling

AutoFDO
profile
V1

Kernel
Sources

V2

Build: V1
Profile & Debug

Info

“Perf”
Kernel

Production
Profiling

AutoFDO
profile
V2

Ti
me

Kernel
Sources

V3

Build: V2
Profile & Debug

Info

LBR for AutoFDO & Propeller

● Intel LBR like hardware support
● Offline tools to convert LBR data to profile

○ create_llvm_prof or llvm_profgen

LBR Entries:

SRC_ADDR_I → DST_ADDR_J

SRC_ADDR_A → DST_ADDR_B

SRC_ADDR_P → DST_ADDR_Q

SRC_ADDR_X → DST_ADDR_Y

Ti
m

e

Increment Ranges:
[Y … P], [Q … A] , [B … I]

Increment Jumps:

X → Y, P → Q, A → B, I → J

AutoFDO Profile
Func:total_samples:head_samples
 Offset1: num_samples
 Offset2: num_samples

foo:42:9
 0: 8
 2: 10 bar:4
 7.2: 6
 30: goo:8
 1: 4
 5: boo:4
 2.1: 1
 2.2: 3
 41: 10

AMD
● Zen3: BRS
● Zen4: LBR-v2

ARM
● ETM
● SPE

https://github.com/google/autofdo
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-profgen

List of optimizations that benefit from FDO

● Function inlining:
○ Removing call overhead
○ Enlarging optimization scope that matters

● BasicBlock layout: increase branch fall-through
○ Fall-through is just more effective than taken even both correctly predicted
○ Fall-through groups more hot BBs together -- better i-cache utilization

● Indirect-call promotion (value profiling)
○ Reducing indirect-call and making inline possible

● Other optimizations:
○ Function layout
○ Machine function splitting
○ Scalar optimization, like speculative PRE
○ Loop nested optimization, like unrolling / peeling and vectorization
○ Partial inlining
○ Register allocation
○ ThinLTO

● Build kernel with FDO (iFDO and AutoFDO)
○ Overview
○ Experimental results

● Build kernel with AutoFDO and Propeller
○ Overview
○ Experimental results

Experiment results

Micro-Benchmarks:

Load-tests:
● Google database app: improves 2.6% with AutoFDO kernel, 2.9% with iFDO kernel
● Meta services: improves ~5% with AutoFDO kernel, ~6% with iFDO kernel

Kernel PMU stats for tcp_rr

Instruction heatmap comparison (tcp_rr)

ifdo ifdo + thinlto

autofdo + thinltoautofdo

nofdo

nofdo

AutoFDO kernel: lessons, challenges and TODOs

● Improve offline tools to support kernel
● Things to be done:

○ Apply unique linkage names for static functions
○ Module support

● Testing is most challenging
○ Fast and reliable performance test
○ Representative workloads

● Lessons:
○ AutoFDO is easy to use
○ System with sufficient load during profiling
○ Intel machine profile works well on AMD machines
○ Customized kernel helps the performance
○ Enable LTO / ThinLTO for better performance

● Build kernel with FDO (iFDO and AutoFDO)
○ Overview
○ Experimental results

● Build kernel with AutoFDO and Propeller
○ Overview
○ Experimental results

What is a post linker optimizer?

Opt Kernel Opt-1 Opt-2 Opt-3
Opt Kernel

V2

Post linker optimizer

Profile

Propeller in practice

Opt Kernel Opt-1 Opt-2

Propeller
Profile

Kernel
Source

Compiler Optimization
Pipeline Opt-1

Compiler

Kernel
ObjectsLinker PipelineOpt-2

Opt Kernel
V2

Linker

Propeller ASPLOS
Paper

https://research.google/pubs/propeller-a-profile-guided-relinking-optimizer-for-warehouse-scale-applications/
https://research.google/pubs/propeller-a-profile-guided-relinking-optimizer-for-warehouse-scale-applications/
https://research.google/pubs/propeller-a-profile-guided-relinking-optimizer-for-warehouse-scale-applications/

Propeller - Cont'd

1. Pros
❏ Avoid disassembly
❏ Scalable for distributed build systems, warehouse-scaled application ready

2. Cons
❏ Requires sources and needs to re-build the binary

3. Optimizations
❏ Basic block layout (details)
❏ Path cloning (details)
❏ Inter-procedure register allocation - work in progress (details)

https://groups.google.com/g/llvm-dev/c/ef3mKzAdJ7U/m/1shV64BYBAAJ
https://lists.llvm.org/pipermail/llvm-dev/2020-September/145357.html
https://github.com/sunxfancy/IPRA-exp

Propeller in Action

Build with
Propeller
options

Load
 Tests /

Production

Build with
Propeller
profiles

Kernel
Source

“Perf”
Kernel

Raw
Perf
Data

Optimized
Kernel Production

Propeller
profiles

Propeller on AutoFDO

Build with
AutoFDO options

Kernel
Source

“Perf”
Kernel

Production

Build with AutoFDO
profile and Propeller

options

“Perf”
Kernel

Raw
Perf
Data

AutoFDO
profile

Raw
Perf
Data

Propeller
Profiles

Build with
AutoFDO Profile
and Propeller

Profiles

Additional Notes on Propeller

● Propeller and kernel modules
○ Currently, post linker optimizers work for executables and shared libraries.

○ Kernel modules are not executables nor shared libraries, they are relocatable objects.

○ Propeller is capable of optimizing kernel modules too.

● Propeller and unique static function names in kernels
○ “-funique-internal-linkage-names” cannot be used

● Propeller works well with iFDO, ThinLTO.

Additional Notes on Propeller - Cont’d

● AutoFDO profiles offer flexibility by tolerating:
○ Source code variations: Minor changes in the source code won't necessarily invalidate the profile.

○ Different build options: Slight adjustments to build settings can still be compatible with the

profile.

● Propeller profiles has zero tolerance for source code or build settings changes
○ The source code and build settings must be identical to those used during profile generation.

Propeller - toolings and supported platforms

1. Requires github.com/google/autofdo
2. Requires Hardware support

a. On X86_64
i. LBR - INTEL Haswell (16-Entry LBR) or INTEL Skylake (32-Entry LBR) or later
ii. BRS - AMD Zen 3 EPYC
iii. LBR EXT V2 - AMD Zen 4

b. On Arm
i. Arm SPE
ii. Arm ETM

Fully validated? Kernel Internal Applications

LBR

BRS

LBR EXTV2

Arm SPE

Arm ETM

https://github.com/google/autofdo

Instruction heatmap comparison (tcp_rr)

ifdo ifdo + thinlto ifdo + thinlto + propeller

autofdo + thinlto +propellerautofdo + thinltoautofdo

Kernel PMU stats for tcp_rr

Current status

● Patches submitted for review

● Internally doing large scale production tests to measure the performance

● Investigating customized kernel based on specific workload

https://lore.kernel.org/lkml/20240728203001.2551083-1-xur@google.com/

Summary

● FDO improves kernel performance significantly
● AutoFDO can integrate with kernel build very well

○ Easier to deploy
○ Can be profilied from production
○ Get most of the iFDO performance or even better

● Add Propeller to get best possible performance

Thank you!

