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○ 10 years ago O3+PGO+LTO was the state of the art in the open source world
○ 2015: conceived profile-based BOLT to work with any compiler toolchain
○ Double digit gains on top of compiler PGO+LTO

○ Speeding up both GCC and Clang
○ Optimizing FB/Meta services since 2016
○ Open-sourced since 2018
○ In LLVM since 2022
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○ Code Layout Optimizations
○ L1 I$ is small 32KB/64KB
○ Compiler does not have enough information

○ Inlining one of the reasons
○ BOLT profiles at the lowest level

○ Knows “final” edge profiles
○ Two-stage PGO became de facto for maximum performance

○ “Large”/datacenter applications
○ Context-sensitive PGO flavors
○ More PLO tools
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○ Complements compiler
○ Support popular architectures
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x86-64
AArch64
RISC-V

Binary Optimization and Layout Tool



○ BOLT applied to the Linux kernel
○ On top of PGO:

○ 2% QPS gain on Meta’s TAO distributed data store
○ 2.5% gain on RockDB db_bench fillseq
○ ~30% reduction in br_inst_retired.near_taken:k

○ Important considerations:
○ Kernel configuration
○ Time spent in the kernel
○ Micro- vs Macro- benchmark
○ System configuration and bottlenecks
○ Quality of profile

Performance

System Performance Improvements



○ No recompilation required
○ Only if function splitting was enabled. BOLT splits better.

○ Link with -q (-Wl,-q) a.k.a. --emit-relocs
○ Takes seconds to optimize vmlinux

BOLT Usage
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○ Sampling branch data
○ perf with Intel LBR or similar

○ Instrumentation when LBR not available
○ Traces (PT or ETM)
○ Cycles sampling

BOLT Usage

Profile



○ Assumptions:
○ Well-formed unobfuscated code
○ Compiler-generated code
○ Assembly with good form
○ Similar to objtool?

○ Unstripped x86-64 ELF

Building Binary Optimizer

What does it take to build Binary Optimizer for 
Linux kernel?



○ Identify Code and Data
○ Identify Functions and Boundaries
○ Disassemble Functions
○ Build IR
○ Attach Profile
○ Run Optimizations
○ Emit and Write Optimized Code
○ Update Metadata

Building Binary Optimizer

Steps:



○ Segments
○ Sections
○ ELF flags

○ SHF_ALLOC | SHF_EXECINSTR
○ Not a problem for unstripped binaries

Building Binary Optimizer

Identify Code and Data



○ Symbol Table
○ Dynamic symbol table
○ FDEs in .eh_frame
○ Not a problem for unstripped binaries

Building Binary Optimizer

Identify Functions and Boundaries



○ Symbolic disassembler
○ How to distinguish constant from an address?
○ x86-64 rip-relative addressing
○ Linker relocations
○ Function pointers detection in code

Building Binary Optimizer

Disassemble



○ MCPlus
○ LLVM MC-level instructions with annotations
○ E.g. ORC annotations per instruction

○ Indicates frame/stack modification
○ With CFG (basic blocks with edges)
○ Leverage LLVM for low-level target analysis
○ Challenge:

○ Indirect jumps

Building Binary Optimizer

Build IR



○ Profile on edges for optimal layout decisions
○ A → B could be anywhere in [0, 100]

○ Optimal path for layout unknown
○ Without edge info, some info can be recovered

Building Binary Optimizer

Attach Profile



○ Focus on Code Layout
○ Basic-Block Reordering (ext-TSP)
○ Function Splitting

○ Hot/Cold is the basic
○ CDSplit

○ Fragment/Function Reordering
○ CDSort

○ x86-specific branch optimization on hot path

Building Binary Optimizer

Run Optimizations



○ No need to re-write data
○ Update code references
○ Jump Tables

○ Where place new code?
○ Original function bodies
○ New segment
○ Reuse .text but erase old code first

Building Binary Optimizer

Emit and Write Optimized Code
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○ Update functions in-place
○ Safe
○ Works without relocations too
○ Piggy-backs on compiler/linker function order
○ Prevents over-specialization of code layout
○ Brings most of performance benefits
○ Con: suboptimal coverage

Building Binary Optimizer

Emit and Write Optimized Code

?



○ Critical
○ ELF and PHDR tables
○ .eh_frame + .eh_frame_hdr
○ C++ exception table

○ Existing ranges are interrupted
○ Less critical (but still important)

○ Symbol table
○ DWARF
○ Compiler pseudo probes
○ etc.

Building Binary Optimizer

Update Metadata



○ Sets kernel apart from user space
○ Code modifications at boot time and runtime are common
○ What You See Is *NOT* What You Get

○ w/ “objdump -d”
○ Challenges for Binary Optimization

Linux Kernel Specifics

Linux Kernel Metadata



○ Oops Rewind Capability
○ Similar to DWARF CFI but faster

○ Optimized lookup tables
○ Every instruction IP is virtually mapped to an entry

○ SPOffset
○ BPOffset
○ SPReg, BPReg, Type, Signal

○ .orc_unwind + .orc_unwind_ip sections
○ .orc_lookup - populated at runtime

○ Every instruction annotated with ORC entry
○ Updated IPs for the new code layout

○ Stack is unchanged

Linux Kernel Specifics

ORC



○ nop or lock byte - decided at boot time
○ Annotate instructions with “SMPLock”
○ Update .smp_locks with new instruction addresses

Linux Kernel Specifics

SMP Locks



○ Call instructions are updated at runtime
○ Tracked by a table with entries:

○ s32 address
○ s32 key

○ Annotate instructions with “StaticCall”
○ Update addresses in the table
○ Table sorted at runtime in static_call_sort_entries()

○ Updates are in-place

Linux Kernel Specifics

Static Calls



○ NOP or JMP toggled at runtime
○ Optimized for LIKELY case of static key, true or false

○ NOP “most” of the time
○ The static keys table stores:

○ NOP/JMP location
○ JMP target
○ Key info

○ Lower bit of Key indicates if the key is likely true
○ Newer kernels optimize for jmp size (!)
○ jump_label_update() updates all code entries for a key (batch mode)
○ text_poke_bp_batch() overrides the first byte with int3

Linux Kernel Specifics

Static Keys



○ BOLT recognizes code locations and adjusts CFG
○ Special “conditional” branch jit (CC “it”)

○ BOLT optimizes for the final JMP size
○ Can always output 5-byte JMP for compatibility
○ Update table with new addresses

Linux Kernel Specifics

Static Keys



○ Different instructions sequences depending on CPU features
○ Multiple alternatives possible
○ Alternatives can have their own ORC entries

○ Same ORC table is shared putting restrictions on instruction 
boundaries (developers can use NOPs)

○ Can include control flow instructions
○ BOLT annotates disassembly with alternatives
○ Hard to properly optimize unless CFG is fixed

Linux Kernel Specifics

Alternative Instructions: .alt_instructions



○ Replaced by alternative instructions in new kernels
○ Tracked by a table with entries:

○ u8* instr
○ u8 type
○ u8 len

○ Annotate instructions with “ParaSite”
○ Skip optimization

Linux Kernel Specifics

Paravirtual Instruction Table: .parainstructions



○ Used for kernel debugging
○ WARN()/WARN_ON() & BUG()/BUG_ON()

○ struct bug_entry 
○ Pointer to ud2 instruction corresponding to a bug

○ Always PC-relative on x86-64
○ Source location and flags

○ Update ud2 location
○ find_bug() uses linear search

Linux Kernel Specifics

Bug Table: __bug_table



○ Instructions that access user-space memory can cause page 
faults

○ The table references the memory instruction and the code where 
the execution will resume.

○ The table may be expected to be sorted
○ Currently BOLT skips functions with exceptions and fixups

Linux Kernel Specifics

Exception Table: __ex_table



○ Lists code handlers for errors associated with a given PCI
○ BOLT verifies that handlers are at the start of a function
○ No update needed

Linux Kernel Specifics

PCI Fixup Table: .pci_fixup



○ All metadata can be dumped by BOLT
○ BOLT Disassembly is annotated with Kernel metadata
○ Few changes between 5.19 and 6.8

○ E.g. struct alt_instr
○ BOLT automatically detects the correct data structure form

○ Undetected Metadata?
○ Relocations pointing at function with displacement
○ Reject optimization

Linux Kernel Specifics

Kernel Metadata Summary



○ Profiling BOLTed Binaries
○ Continuous Profiling

○ New source - new binary
○ Binary Profile Inference

○ Re-optimizing
○ Save original BOLT input

○ Lightning BOLT
○ Parallel optimizations

○ Other BOLT optimizations
○ Security Applications

Advanced (Off)Topics

Not Covered in this Talk
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Thanks!

github.com/llvm/llvm-project/bolt




