
BOLT - Binary Optimizer for Linux 
Kernel

Maksim Panchenko
Meta, Inc

⚡



Binary Optimization and Layout Tool



Agenda 01 Introduction to BOLT

02 Kernel Performance 
Numbers

03 Usage

04 Building Binary Optimizer

05 Linux Kernel Specifics

06 Advanced (Off)Topics



○ 10 years ago O3+PGO+LTO was the state of the art in the open source world
○ 2015: conceived profile-based BOLT to work with any compiler toolchain
○ Double digit gains on top of compiler PGO+LTO

○ Speeding up both GCC and Clang
○ Optimizing FB/Meta services since 2016
○ Open-sourced since 2018
○ In LLVM since 2022

Introduction to BOLT

History



Introduction to BOLT

History



Introduction to BOLT

Why faster?



○ Code Layout Optimizations
○ L1 I$ is small 32KB/64KB
○ Compiler does not have enough information

○ Inlining one of the reasons
○ BOLT profiles at the lowest level

○ Knows “final” edge profiles
○ Two-stage PGO became de facto for maximum performance

○ “Large”/datacenter applications
○ Context-sensitive PGO flavors
○ More PLO tools

Introduction to BOLT

But How?



Introduction to BOLT

But How?



○ Post-link Optimizer
○ Part of LLVM project
○ Complements compiler
○ Support popular architectures

Introduction to BOLT

Binary Optimization and Layout Tool



○ Post-link Optimizer
○ Part of LLVM project
○ Complements compiler
○ Support popular architectures

Introduction to BOLT

Runs on ELF binary, e.g. vmlinux

Binary Optimization and Layout Tool



○ Post-link Optimizer
○ Part of LLVM project
○ Complements compiler
○ Support popular architectures

Introduction to BOLT

Runs on ELF binary, e.g. vmlinux
Runs on GCC-compiled code too

Binary Optimization and Layout Tool



○ Post-link Optimizer
○ Part of LLVM project
○ Complements compiler
○ Support popular architectures

Introduction to BOLT

Runs on ELF binary, e.g. vmlinux
Runs on GCC-compiled code too
PGO+LTO+BOLT for max performance

Binary Optimization and Layout Tool



○ Post-link Optimizer
○ Part of LLVM project
○ Complements compiler
○ Support popular architectures

Introduction to BOLT

Runs on ELF binary, e.g. vmlinux
Runs on GCC-compiled code too
PGO+LTO+BOLT for max performance
 

x86-64
AArch64
RISC-V

Binary Optimization and Layout Tool



○ BOLT applied to the Linux kernel
○ On top of PGO:

○ 2% QPS gain on Meta’s TAO distributed data store
○ 2.5% gain on RockDB db_bench fillseq
○ ~30% reduction in br_inst_retired.near_taken:k

○ Important considerations:
○ Kernel configuration
○ Time spent in the kernel
○ Micro- vs Macro- benchmark
○ System configuration and bottlenecks
○ Quality of profile

Performance

System Performance Improvements



○ No recompilation required
○ Only if function splitting was enabled. BOLT splits better.

○ Link with -q (-Wl,-q) a.k.a. --emit-relocs
○ Takes seconds to optimize vmlinux

BOLT Usage

BOLT Usage



BOLT Usage

BOLT Usage Example



○ Sampling branch data
○ perf with Intel LBR or similar

○ Instrumentation when LBR not available
○ Traces (PT or ETM)
○ Cycles sampling

BOLT Usage

Profile



○ Assumptions:
○ Well-formed unobfuscated code
○ Compiler-generated code
○ Assembly with good form
○ Similar to objtool?

○ Unstripped x86-64 ELF

Building Binary Optimizer

What does it take to build Binary Optimizer for 
Linux kernel?



○ Identify Code and Data
○ Identify Functions and Boundaries
○ Disassemble Functions
○ Build IR
○ Attach Profile
○ Run Optimizations
○ Emit and Write Optimized Code
○ Update Metadata

Building Binary Optimizer

Steps:



○ Segments
○ Sections
○ ELF flags

○ SHF_ALLOC | SHF_EXECINSTR
○ Not a problem for unstripped binaries

Building Binary Optimizer

Identify Code and Data



○ Symbol Table
○ Dynamic symbol table
○ FDEs in .eh_frame
○ Not a problem for unstripped binaries

Building Binary Optimizer

Identify Functions and Boundaries



○ Symbolic disassembler
○ How to distinguish constant from an address?
○ x86-64 rip-relative addressing
○ Linker relocations
○ Function pointers detection in code

Building Binary Optimizer

Disassemble



○ MCPlus
○ LLVM MC-level instructions with annotations
○ E.g. ORC annotations per instruction

○ Indicates frame/stack modification
○ With CFG (basic blocks with edges)
○ Leverage LLVM for low-level target analysis
○ Challenge:

○ Indirect jumps

Building Binary Optimizer

Build IR



○ Profile on edges for optimal layout decisions
○ A → B could be anywhere in [0, 100]

○ Optimal path for layout unknown
○ Without edge info, some info can be recovered

Building Binary Optimizer

Attach Profile



○ Focus on Code Layout
○ Basic-Block Reordering (ext-TSP)
○ Function Splitting

○ Hot/Cold is the basic
○ CDSplit

○ Fragment/Function Reordering
○ CDSort

○ x86-specific branch optimization on hot path

Building Binary Optimizer

Run Optimizations



○ No need to re-write data
○ Update code references
○ Jump Tables

○ Where place new code?
○ Original function bodies
○ New segment
○ Reuse .text but erase old code first

Building Binary Optimizer

Emit and Write Optimized Code

?



○ Update functions in-place
○ Safe
○ Works without relocations too
○ Piggy-backs on compiler/linker function order
○ Prevents over-specialization of code layout
○ Brings most of performance benefits
○ Con: suboptimal coverage

Building Binary Optimizer

Emit and Write Optimized Code

?



○ Critical
○ ELF and PHDR tables
○ .eh_frame + .eh_frame_hdr
○ C++ exception table

○ Existing ranges are interrupted
○ Less critical (but still important)

○ Symbol table
○ DWARF
○ Compiler pseudo probes
○ etc.

Building Binary Optimizer

Update Metadata



○ Sets kernel apart from user space
○ Code modifications at boot time and runtime are common
○ What You See Is *NOT* What You Get

○ w/ “objdump -d”
○ Challenges for Binary Optimization

Linux Kernel Specifics

Linux Kernel Metadata



○ Oops Rewind Capability
○ Similar to DWARF CFI but faster

○ Optimized lookup tables
○ Every instruction IP is virtually mapped to an entry

○ SPOffset
○ BPOffset
○ SPReg, BPReg, Type, Signal

○ .orc_unwind + .orc_unwind_ip sections
○ .orc_lookup - populated at runtime

○ Every instruction annotated with ORC entry
○ Updated IPs for the new code layout

○ Stack is unchanged

Linux Kernel Specifics

ORC



○ nop or lock byte - decided at boot time
○ Annotate instructions with “SMPLock”
○ Update .smp_locks with new instruction addresses

Linux Kernel Specifics

SMP Locks



○ Call instructions are updated at runtime
○ Tracked by a table with entries:

○ s32 address
○ s32 key

○ Annotate instructions with “StaticCall”
○ Update addresses in the table
○ Table sorted at runtime in static_call_sort_entries()

○ Updates are in-place

Linux Kernel Specifics

Static Calls



○ NOP or JMP toggled at runtime
○ Optimized for LIKELY case of static key, true or false

○ NOP “most” of the time
○ The static keys table stores:

○ NOP/JMP location
○ JMP target
○ Key info

○ Lower bit of Key indicates if the key is likely true
○ Newer kernels optimize for jmp size (!)
○ jump_label_update() updates all code entries for a key (batch mode)
○ text_poke_bp_batch() overrides the first byte with int3

Linux Kernel Specifics

Static Keys



○ BOLT recognizes code locations and adjusts CFG
○ Special “conditional” branch jit (CC “it”)

○ BOLT optimizes for the final JMP size
○ Can always output 5-byte JMP for compatibility
○ Update table with new addresses

Linux Kernel Specifics

Static Keys



○ Different instructions sequences depending on CPU features
○ Multiple alternatives possible
○ Alternatives can have their own ORC entries

○ Same ORC table is shared putting restrictions on instruction 
boundaries (developers can use NOPs)

○ Can include control flow instructions
○ BOLT annotates disassembly with alternatives
○ Hard to properly optimize unless CFG is fixed

Linux Kernel Specifics

Alternative Instructions: .alt_instructions



○ Replaced by alternative instructions in new kernels
○ Tracked by a table with entries:

○ u8* instr
○ u8 type
○ u8 len

○ Annotate instructions with “ParaSite”
○ Skip optimization

Linux Kernel Specifics

Paravirtual Instruction Table: .parainstructions



○ Used for kernel debugging
○ WARN()/WARN_ON() & BUG()/BUG_ON()

○ struct bug_entry 
○ Pointer to ud2 instruction corresponding to a bug

○ Always PC-relative on x86-64
○ Source location and flags

○ Update ud2 location
○ find_bug() uses linear search

Linux Kernel Specifics

Bug Table: __bug_table



○ Instructions that access user-space memory can cause page 
faults

○ The table references the memory instruction and the code where 
the execution will resume.

○ The table may be expected to be sorted
○ Currently BOLT skips functions with exceptions and fixups

Linux Kernel Specifics

Exception Table: __ex_table



○ Lists code handlers for errors associated with a given PCI
○ BOLT verifies that handlers are at the start of a function
○ No update needed

Linux Kernel Specifics

PCI Fixup Table: .pci_fixup



○ All metadata can be dumped by BOLT
○ BOLT Disassembly is annotated with Kernel metadata
○ Few changes between 5.19 and 6.8

○ E.g. struct alt_instr
○ BOLT automatically detects the correct data structure form

○ Undetected Metadata?
○ Relocations pointing at function with displacement
○ Reject optimization

Linux Kernel Specifics

Kernel Metadata Summary



○ Profiling BOLTed Binaries
○ Continuous Profiling

○ New source - new binary
○ Binary Profile Inference

○ Re-optimizing
○ Save original BOLT input

○ Lightning BOLT
○ Parallel optimizations

○ Other BOLT optimizations
○ Security Applications

Advanced (Off)Topics

Not Covered in this Talk



Instead of Demo

BOLT Run



Instead of Demo

BOLT Run



Instead of Demo

BOLT Disassembly



Instead of Demo

BOLT Disassembly



Instead of Demo

BOLT Disassembly



Thanks!

github.com/llvm/llvm-project/bolt




