

Intel TD Partitioning and vTPM on
COCONUT-SVSM

Peter Fang, Intel

Chuanxiao Dong, Intel

Jiewen Yao, Intel

Agenda

●Overview of Intel TD Partitioning

●COCONUT-SVSM TDP status update

●TDP-based vTPM

Architecture Overview

L2/L1 vCPU Transitions

●A TD vCPU is running in either L1 or L2 at

any given time

●Host VMM can initiate host→L1 or

host→L2 entry

●L1 can initiate L1→L2 entry

●L2 VM exit

–Causes TD exit (handled by host VMM)

–Causes L2→L1 exit (handled by L1 VMM)

–Guest-side local flow (handled by the

TDX module alone)

L2 Interrupt Virtualization

●x2APIC mode is virtualized via APICv (a virtual APIC page is available)

●xAPIC mode is emulated by L1 VMM via software

●Posted interrupts for L2 VMs are not supported

L2 Private Memory Virtualization

●To simplify L2 memory management,

TDP L2s use page aliasing to

partition the GPA space (no separate

L2 GPA→L1 GPA mappings)

●Each L2 SEPT is individually

managed but L1 and all L2s share the

same GPA space

●L1 VMM manages L2 page aliases

through TDG.MEM.PAGE.ATTR.WR

* L2 shared memory is treated in the

same way as L1 shared memory

GPA Space
VM #0

L1 VMM

VM #1 L2 VM
(e.g. Chrome)

VM #2

L2 VM (e.g.
TEE VM)

VM #3

L2 VM

Page A RWX R None

Page B RWX RW RW R

Page C RWX RWX None

Page D RWX None RWX

Page E RWX RWX R

Page F RWX RWX R

Page G RWX RW R

Page H RWX RWX R

Putting It All Together…

●Example: Adding an L2 page alias

(L2) (RESUME_L1)

TD Partitioning (L2) vs TDX (L1)

●TDP Supports all CPU modes supported by VMX non-root mode (real mode, protected mode, compatibility mode, long mode).

●A TDP guest is much more similar to a traditional VMX guest; most x86 instructions can be executed in the guest.

●TDP requires less enlightenment. It’s possible to have a completely unmodified TDP guest, albeit there would be performance

degradation. Comparable performance can be achieved by enlightening the guest to support shared pages and GHCI.

●TDP has L1 VMM in its TCB. Secure device models such as vTPM can exist in L1 VMM.

TD Partitioning vs Traditional Nested Virtualization

●TDP achieves security through two L0 hypervisors: host VMM (non-SEAM mode) and the TDX module (SEAM root mode).

–TDP L2 exit flows are more complex: local flow + TD exits + L2→L1 exits (all are vmexit-esque)

●TDP simplifies guest memory management by adopting page aliasing.

●VMX instructions are disallowed in L1 TD; L1 VMM uses TDCALL instructions (TDG calls) instead.

–TDG calls are mostly akin to VMX instructions but also include TDX-specific extensions.

COCONUT-SVSM TDP Status

●Demo code published on GitHub (boots vanilla Linux kernel as L2)

●TDX enabling partially upstreamed (IGVM support, stage1, part of stage2; SVSM kernel and SMP support pending)

●Actively engaging with the community to provide vTPM, instruction decoder and user-mode support

●Highlights & challenges

–Enabling: TDX boots into stage2 via IGVM now but more enabling is needed. Working with upstream stakeholders on platform

abstraction to reduce TDX-specific logic.

–Interrupt: Spec to inject interrupts from host to SVSM and from SVSM to L2 are mostly finalized. Need to engage with KVM

maintainers to get their buy-in and upstream TDP restricted injection patches.

–User mode: Uploaded drafts for user-mode VMM design and syscall object management framework. Working with the community

to start the code review & upstreaming process.

Intel TD Partitioning based vTPM solution on Coconut-SVSM

User TD

TDX-Module

VMM

L1-VMM
vTPM Service

L2-VM
(guest OS)

TD-Partition Based vTPM

TD

VMM/QEMU

(1) Launch L1

L1 Coconut-SVSM

vTPM service
(2) init TPM NV,

gen TPM EK,
TPM EKCert(TD Quote(EKpub))

L2 Guest

vTPM driver

(3) Launch L2 TPM CRB - Private MMIO

(4) communicate

High Level Archtecture

(MRTD <= L1-SVSM)

(RTMR[0] <= Launch-Param)

(PCR[] <= Next Component)

(PCR[0] <= SVSMver)
(PCR[0] <= TDVF)

(RTMR[] <= Separator)

Role in vTPM TD-Partitioning solution

Role vTPM Service

Virtual Root of Trust for Reporting
(vRTR)

vTPM Service: TPM software stack.

Virtual Root of Trust for Storage
(vRTS)

vTPM Service: vTPM non-volatile storage (NVS) inside of coconut-SVSM.
NVS is actually not persistent.

Virtual Root of Trust for
Measurement (vRTM)

L1 coconut-SVSM: extend initial TDVF to PCR[0]
(Similar to Intel Boot Guard ACM)

vTPM Endorsement Key (EK)
Certificate

vTPM Service: generate key pair inside of NVS.

Self-signed EK Cert: OID:“vTPM coconut SVSM Quote” in the certificate – hash of
EKpub is included in the TdQuote.

Ephemeral vTPM only

●No Persistent Storage in vTPM

By default, persistent storage disappeared after coconut-SVSM teardown.

●vTPM NVS (Non-Volatile Storage)

Ephemeral NVS is implemented inside of vTPM service in coconut-SVSM.

●vTPM EK

Ephemeral EK generated when SVSM init.

EKpub hash is included as REPORTDATA in TDREPORT for coconut-SVSM.

L2 Guest L1 Coconut-
SVSM

VMM launch L1 Coconut-SVSM

L1 TD Quote

MRTD=||coconut-SVSM

RTMR[0]=||Launch-Param

RTMR[1]

RTMR[2]

RTMR[3]=0

TDVF:TPM2_PCR_Extend(PCRIndex, tdvf_data)

L2 Guest vTPM PCR(T1)

PCR[0]=||SvsmVer||TDVF

PCR[1~7]=0

PCR[8~16]=0

PCR[17~23]=0

L1 Coconut-SVSM launch L2 Guest

L2 Guest vTPM PCR(T2)

PCR[0]=||SvsmVer||TDVF

PCR[1~7]=||tdvf_data

PCR[8~16]=0

PCR[17~23]=0

vTPM PCR(T0)

PCR[0]=0

PCR[1~7]=0

PCR[8~16]=0

PCR[17~23]=0

L2 Guest vTPM PCR(T3)

PCR[0]=||SvsmVer||TDVF

PCR[1~7]=||tdvf_data

PCR[8~16]=||os_data

PCR[17~23]=0
OS:TPM2_PCR_Extend(PCRIndex, os_data)

T0

T1

T2

T3

REPORTDATA=H(EKPubkey)

L1 TD Quote

MRTD=||coconut-SVSM

RTMR[0]=||LP||Separator

RTMR[1]=||Separator

RTMR[2]=||Separator

RTMR[3]=||Separator
REPORTDATA=H(EKPubkey)

MR/PCR life cycle

Attestation Architecture

●vTPM EK cert contains the TD_Quote.

●TD_Quote reflects L1 info and provides authenticity of vTPM.

MRTD/RTMR == L1 coconut-SVSM

REPORTDATA == L1 vTPM EK.

●vTPM PCR reflects L2 TD measurement.

L2 TDVF is measured into PCR0, by RTM (L1 coconut-SVSM).

TD Quote

TPM Quote

L1 Coconut-SVSM

L2 Guest

Standard TPM Attestation

L2 Guest

vTPM

PCR

Signature

TDREPORT

Signature

L1 Coconut-SVSM
TDX Attestation

Quoting Enclave /
TD

Endorsement Key
(TPM EK) Certificate

Attestation Key (TPM
AK)

OID: vTPM
TD Quote

TEE_INFO

Attestation Key (TDX
AK)

Provisioning
Certification Key (TDX

PCK)

TCG EventLog

CC (TDX) EventLog

EK Hash

data

hash

Combined Attestation

References

●Intel TDX Module v1.5 TD Partitioning Architecture Specification:

https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-

specification.html

●Guest-Host-Communication Interface (GHCI):

https://www.intel.com/content/www/us/en/content-details/726790/guest-host-communication-interface-ghci-for-intel-trust-domain-

extensions-intel-tdx.html

●Intel TD-Partitioning based vTPM document:

https://github.com/intel-staging/td-partitioning-svsm/blob/svsm-tdp-

vtpm/Documentation/TD%20Partitioning%20based%20virtual%20TPM%20Design%20Guide%20Rev%200.5.1.pdf

●COCONUT-SVSM:

https://github.com/coconut-svsm/svsm

●Intel’s SVSM-TDP PoC:

https://github.com/intel-staging/td-partitioning-svsm/tree/svsm-tdp

●Intel TD-Partitioning based vTPM POC:

https://github.com/intel-staging/td-partitioning-svsm/tree/svsm-tdp-vtpm

https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773039/intel-tdx-module-v1-5-td-partitioning-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/726790/guest-host-communication-interface-ghci-for-intel-trust-domain-extensions-intel-tdx.html
https://www.intel.com/content/www/us/en/content-details/726790/guest-host-communication-interface-ghci-for-intel-trust-domain-extensions-intel-tdx.html
https://github.com/intel-staging/td-partitioning-svsm/blob/svsm-tdp-vtpm/Documentation/TD Partitioning based virtual TPM Design Guide Rev 0.5.1.pdf
https://github.com/intel-staging/td-partitioning-svsm/blob/svsm-tdp-vtpm/Documentation/TD Partitioning based virtual TPM Design Guide Rev 0.5.1.pdf
https://github.com/coconut-svsm/svsm
https://github.com/intel-staging/td-partitioning-svsm/tree/svsm-tdp
https://github.com/intel-staging/td-partitioning-svsm/tree/svsm-tdp-vtpm

Backup Slides

Control Structures for L2 VM

●Host VMM allocated, TDX

module managed

●Host VMM allocated, host

VMM managed

●L1 VMM allocated & managed

L2 VM Exits

●L2 VM exits are always caught by the TDX module first

●L1 VMM handles most of the remaining exits via L2→L1 exits

●The TDX module handles the most critical cases (e.g. sensitive MSR/CR accesses, etc)

●A few are handled by host VMM (e.g. NMI, external interrupt, SEPT-related EPT violations, etc)

	Slide 1
	Slide 2: Intel TD Partitioning and vTPM on COCONUT-SVSM
	Slide 3: Agenda
	Slide 4: Architecture Overview
	Slide 5: L2/L1 vCPU Transitions
	Slide 6: L2 Interrupt Virtualization
	Slide 7: L2 Private Memory Virtualization
	Slide 8: Putting It All Together…
	Slide 9: TD Partitioning (L2) vs TDX (L1)
	Slide 10: TD Partitioning vs Traditional Nested Virtualization
	Slide 11: COCONUT-SVSM TDP Status
	Slide 12: Intel TD Partitioning based vTPM solution on Coconut-SVSM
	Slide 13: TD-Partition Based vTPM
	Slide 14
	Slide 15: Role in vTPM TD-Partitioning solution
	Slide 16: Ephemeral vTPM only
	Slide 17: MR/PCR life cycle
	Slide 18: Attestation Architecture
	Slide 19: Combined Attestation
	Slide 20: References
	Slide 21
	Slide 22: Backup Slides
	Slide 23: Control Structures for L2 VM
	Slide 24: L2 VM Exits

