
Rust for Linux

Miguel Ojeda
ojeda@kernel.org

What is Rust for Linux?

“Rust for Linux is the project adding support
for the Rust language to the Linux kernel.”

What is Rust for Linux?

Our goal has always been:

Full integration of Rust into the kernel as the second main programming language.

First-class support for the language.

Focused on in-tree, not out-of-tree.

Not limited to loadable modules.

Shared infrastructure, e.g. standard library.

Not limited to drivers or “leaf modules”.

Not limited to kernelspace code.

Always with the aim to upstream it.

What is Rust for Linux?

Is Rust for Linux a Rust project?

No, although some of us collaborate in Rust or are part of teams there.

Is Rust for Linux a kernel project?

Yes, we are part of the kernel.

However, the project is not really only about kernel changes.

Rust for Linux is really a project involving a few other projects.

Growing Community

536 subscribers in the rust-for-linux mailing list.

From ~460 last year.

— https://subspace.kernel.org/vger.kernel.org.html

https://subspace.kernel.org/vger.kernel.org.html

Growing Community

● 754 users in the Zulip instance (i.e. chat).

From ~530 last year.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● ~30 daily active users in the Zulip instance (i.e. chat).

From ~25 last year.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● ~25k messages sent in the Zulip instance (i.e. chat).

From ~12k last year.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Core Team
RUST
M: Miguel Ojeda <ojeda@kernel.org>
M: Alex Gaynor <alex.gaynor@gmail.com>
M: Wedson Almeida Filho <wedsonaf@gmail.com>
R: Boqun Feng <boqun.feng@gmail.com>
R: Gary Guo <gary@garyguo.net>
R: Björn Roy Baron <bjorn3_gh@protonmail.com>
R: Benno Lossin <benno.lossin@proton.me>
R: Andreas Hindborg <a.hindborg@samsung.com>
R: Alice Ryhl <aliceryhl@google.com>
R: Trevor Gross <tmgross@umich.edu>
L: rust-for-linux@vger.kernel.org
S: Supported
W: https://rust-for-linux.com
B: https://github.com/Rust-for-Linux/linux/issues
C: zulip://rust-for-linux.zulipchat.com
P: https://rust-for-linux.com/contributing
T: git https://github.com/Rust-for-Linux/linux.git rust-next
...

mailto:ojeda@kernel.org
mailto:alex.gaynor@gmail.com
mailto:wedsonaf@gmail.com
mailto:boqun.feng@gmail.com
mailto:gary@garyguo.net
mailto:bjorn3_gh@protonmail.com
mailto:benno.lossin@proton.me
mailto:a.hindborg@samsung.com
mailto:aliceryhl@google.com
mailto:tmgross@umich.edu
mailto:rust-for-linux@vger.kernel.org
https://rust-for-linux.com
https://github.com/Rust-for-Linux/linux/issues
https://rust-for-linux.com/contributing

Core Team

MAINTAINERS: add Trevor Gross as Rust reviewer

Trevor has been involved with the Rust for Linux project for more than
a year now. He has been active reviewing Rust code in the mailing list,
and he already is a formal reviewer of the Rust PHY library and the two
PHY drivers.

In addition, he is also part of several upstream Rust teams:
compiler-contributors team (contributors to the Rust compiler on a regular
basis), libs-contributors (contributors to the Rust standard library on a
regular basis), crate-maintainers (maintainers of official Rust crates),
the binary size working group and the Rust for Linux ping group.

His expertise with the language will be very useful to have around in
the future if Rust keeps growing within the kernel, thus add him to the
`RUST` entry as a reviewer.

— Commit 68d3b6aa0870 ("MAINTAINERS: add Trevor Gross as Rust reviewer")

Latest developments
6.8: Rust 1.74.1, LoongArch, srctree-relative links, Kbuild improvements, Rust PHY abstractions and Asix PHY
“Rust reference driver” (first one)...

6.9: Rust 1.76.0 (2 less unstable features), arm64, container_of! macro, time module, CondVar methods,
documentation cleanup series, first Rust Kselftest...

6.10: Rust 1.78.0 (1 less unstable feature), RISC-V, dropped alloc in-tree fork (~30 language and ~60 library
less unstable features), DWARFv5 and zlib/zstd support, GFP allocation flags support in Box/Vec/Arc... (1 less
unstable feature), Ktime abstraction, methods for CStr/CString/Arc/ArcBorrow, #[pin_data] support for
default values...

6.11: Support for multiple Rust and bindgen versions (thus support for distribution toolchains), uaccess module,
page module, device module, firmware module, LLVM+Rust toolchains...

6.12: KCFI, KASAN and SCS support, MITIGATION_* and objtool support, RUSTC_VERSION, helpers split,
list module (ListArc, AtomicTracker, ListLinks, List, Iter, Cursor, ListArcField), rbtree
module (RBTree, RBTreeNode, RBTreeNodeReservation, Iter, IterMut, Cursor),
https://rust.docs.kernel.org, Trevor joins, AMCC QT2025 PHY driver...

6.13/RFCs/WIP: generic Allocator (custom alloc crate, KBox/VBox/KVBox, KVec/VVec/KVVec), File
abstractions, lints improvements and #[expect], MIPS, shrinker abstraction, global lock support, Untrusted,
custom FFI integer types, kernel (generic?) atomics, safety standard, hrtimer, codecs, tracepoints, third-party proc
macro support (e.g. syn), #[test] KUnit support, new build system (kernel split, visibility, declarative)...

https://rust.docs.kernel.org

Collaboration with Rust

Since February, regular meetings between Rust and Rust for Linux.

Thanks a lot to Josh, Niko and Sid for helping to set them up.

Rust for Linux is a flagship Rust Project goal for 2024H2.

Closing the largest gaps that block building Linux on stable Rust.

Including language, library, compiler, CI...

See also Niko’s and our RustConf 2024 keynote.

— https://rustconf.com/schedule/
— https://blog.rust-lang.org/2024/08/12/Project-goals.html

— https://rust-lang.github.io/rust-project-goals/2024h2/rfl_stable.html

https://rustconf.com/schedule/
https://blog.rust-lang.org/2024/08/12/Project-goals.html
https://rust-lang.github.io/rust-project-goals/2024h2/rfl_stable.html

Collaboration with Rust
Adrian Taylor
Alona Enraght-Moony
Amanieu d'Antras
Antoni Boucher
Arthur Cohen
Boxy
Christian Poveda Ruiz
Ding Xiang Fei
Ed Page
Emilio Cobos Álvarez
Erik Jonkers
Guillaume Gomez
Jakub Beránek
Josh Triplett
Jubilee
Jynn Nelson
Krishna Sundarram
Lukas Wirth
Mara Bos
Mark Rousskov

Michael Goulet
Nell Shamrell-Harrington
Nikita Popov
Niko Matsakis
Pietro Albini
Ralf Jung
Rémy Rakic
Santiago Pastorino
Serial-ATA
Sid Askary
Travis Cross
Tyler Mandry
Urgau
Vincenzo Palazzo
Waffle Maybe
Weihang Lo
Wesley Wiser

...and more!

Linux in Rust’s and bindgen’s CI

One result that happened very quickly was including Rust for Linux in the
per-merge Rust CI.

That is, every Rust PR now build-tests the Linux kernel.

Both projects hope to avoid unintentional changes to Rust that break the
kernel.

Thus, in general, apart from intentional changes, the upcoming Rust compiler
versions should generally work.

bindgen will also include Linux in its CI.

— https://rust-for-linux.com/rust-version-policy
— https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html

https://rust-for-linux.com/rust-version-policy
https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html

Declaring a minimum Rust version (unpinning)

Having Linux in Rust’s and bindgen’s CI helped us unpin the Rust version.

In Linux v6.11, a minimum Rust version was declared.

Our “Minimum Supported Rust Version” is currently 1.78.0.

How often will we upgrade it?

When there is a good reason for that.

For instance, Debian Trixie has been requested to provide Rust 1.85 for
Edition 2024. If it happens, we may migrate to it.

— https://rust-for-linux.com/rust-version-policy
— https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html

— https://alioth-lists.debian.net/pipermail/pkg-rust-maintainers/2024-July/044870.html

https://rust-for-linux.com/rust-version-policy
https://rustc-dev-guide.rust-lang.org/tests/rust-for-linux.html
https://alioth-lists.debian.net/pipermail/pkg-rust-maintainers/2024-July/044870.html

RUSTC_VERSION support

Supporting several versions implies conditional support sometimes.

Especially taking into account the unstable features in use.

For both compiler flags and source code.

Thus the need for RUSTC_VERSION.

Including automatic reconfiguration and rebuild on *_TEXT changes.

And probing macros like rustc-option.

Commit c42297438aee ("kbuild: rust: Define probing macros for rustc")

— https://lore.kernel.org/rust-for-linux/20240902165535.1101978-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20240902165535.1101978-1-ojeda@kernel.org/

Distributions support

Declaring a minimum Rust version allowed us to start supporting distributions.

This was a top requirement.

Distributions that should generally work out of the box:

Arch Linux.

Debian Testing and Unstable (outside the freeze period).

Fedora Linux.

Gentoo Linux.

Nix (unstable channel).

openSUSE Slowroll and Tumbleweed.

Ubuntu 24.04 LTS and 24.10.

— https://docs.kernel.org/rust/quick-start.html#distributions
— https://rust-for-linux.com/rust-version-policy#supported-toolchains

https://docs.kernel.org/rust/quick-start.html#distributions
https://rust-for-linux.com/rust-version-policy#supported-toolchains

— https://docs.kernel.org/rust/quick-start.html

https://docs.kernel.org/rust/quick-start.html#distributions

Other toolchains support

In addition, of course, we still support rustup toolchains.

Including beta and nightly.

Very useful for development.

And the official Rust standalone installers too.

https://forge.rust-lang.org/infra/other-installation-methods.html

— https://docs.kernel.org/rust/quick-start.html
— https://rust-for-linux.com/rust-version-policy#supported-toolchains

https://forge.rust-lang.org/infra/other-installation-methods.html#standalone
https://docs.kernel.org/rust/quick-start.html
https://rust-for-linux.com/rust-version-policy#supported-toolchains

— https://forge.rust-lang.org/infra/other-installation-methods.html

https://forge.rust-lang.org/infra/other-installation-methods.html

— https://forge.rust-lang.org/infra/other-installation-methods.html

https://forge.rust-lang.org/infra/other-installation-methods.html

Other toolchains support

Nathan Chancellor kindly set up LLVM+Rust toolchains too.

https://mirrors.edge.kernel.org/pub/tools/llvm/rust/

These are based on the slim and fast LLVM builds provided in kernel.org.

Two sets are provided:

Latest LLVM: latest stable version of the major version of LLVM that Rust
uses under the hood.

Matching LLVM: a matching version of LLVM that Rust uses under the
hood, so that features such as cross-language LTO that may have subtle
issues without the same LLVM version can be experimented with.

— https://docs.kernel.org/rust/quick-start.html
— https://rust-for-linux.com/rust-version-policy#supported-toolchains

https://mirrors.edge.kernel.org/pub/tools/llvm/rust/
https://docs.kernel.org/rust/quick-start.html
https://rust-for-linux.com/rust-version-policy#supported-toolchains

gccrs

We are in the process of fixing the bugs which prevent us from compiling core. Once core is done, we expect
alloc to go smoothly which means the compiler should be able to be tested on the Rust parts of Linux.

One of biggest issues we are facing for compiling core is needing to re-engineer a big pass of our compiler
pipeline (name-resolution). It was not powerful enough to handle the many complex imports, exports, glob
imports, and re-exports used in core.

To keep working on other issues in parallel, we spent a massive amount of time "flattening" core so that it does
not require any name-resolving to be compiled - all modules are laid out in the same file, without any imports or
exports. This allowed us to expose bugs in our macro expansion, type system, and codegen, which we are now
taking care of.

We have started the work to integrate the polonius borrow-checker into gccrs. We now have nice looking
borrow-errors, with a good integration with the library. There are still some classes of errors that we are
missing, but we are making good progress.

We are close to being able to handle inline assembly, which is necessary for core and presumably for the
Linux kernel.

— Arthur Cohen
— https://rust-for-linux.com/gccrs

— https://rust-gcc.github.io

https://rust-for-linux.com/gccrs
https://rust-gcc.github.io

gccrs

— Arthur Cohen
— https://rust-gcc.github.io/2024/09/03/towards-gcc15.1.html

https://rust-gcc.github.io/2024/09/03/towards-gcc15.1.html

gccrs

— Arthur Cohen
— https://rust-gcc.github.io/2024/09/03/towards-gcc15.1.html

https://rust-gcc.github.io/2024/09/03/towards-gcc15.1.html

gccrs

— Arthur Cohen
— https://rust-gcc.github.io/2024/09/03/towards-gcc15.1.html

https://rust-gcc.github.io/2024/09/03/towards-gcc15.1.html

rustc_codegen_gcc

Support for LTO (Link-Time optimization).

Though not yet tested on Rust for Linux.

Now runs a part of rustc_codegen_gcc's CI in the Rust repo.

Support for f16/f128.

Preparation work to eventually get rustup distribution.

(A year ago, it was the first time it could compile a vanilla kernel).

— Antoni Boucher
— https://rust-for-linux.com/rustc_codegen_gcc

— https://blog.antoyo.xyz

https://rust-for-linux.com/rustc_codegen_gcc
https://blog.antoyo.xyz

rust.docs.kernel.org

The code documentation is available since August 2024 at:

https://rust.docs.kernel.org

Built with --generate-link-to-definition.

Thanks for the support, Konstantin!

Main releases at e.g.:

https://rust.docs.kernel.org/6.11/

linux-next at:

https://rust.docs.kernel.org/next/

The future:

More crates rendered? uapi, bindings.

More tags? Deduplication for storage? Tag selector?

https://rust.docs.kernel.org
https://rust.docs.kernel.org/6.10/
https://rust.docs.kernel.org/next/

MITIGATIONS_* support

Compiler support merged into rustc, patch series queued for v6.12.

With both pieces, now we have x86_64 objtool-enabled & clean builds.

Commit c4d7f546dd9a ("objtool/kbuild/rust: enable objtool for Rust")
Commit fc582dfc1f20 ("x86/rust: support MITIGATION_SLS")
Commit d7868550d573 ("x86/rust: support MITIGATION_RETHUNK")
Commit 284a3ac4a96c ("x86/rust: support MITIGATION_RETPOLINE")

KCFI, KASAN, SCS

KCFI support queued for v6.12.

Commit ca627e636551 ("rust: cfi: add support for CFI_CLANG with Rust")
Commit ce4a2620985c ("cfi: add

CONFIG_CFI_ICALL_NORMALIZE_INTEGERS")

KASAN support queued for v6.12.

Commit e3117404b411 ("kbuild: rust: Enable KASAN support")
...and related ones

SCS support queued for v6.12.

Commit d077242d68a3 ("rust: support for shadow call stack sanitizer")

Enforcing safety docs/comments and #[expect]

Enablement of some safety lints to enforce that // SAFETY comments
and # Safety sections are written and only where expected.

It has been a common theme in reviews.

#[expect] support.

Makes the compiler warn if the diagnostic was not produced.

#[expect(dead_code)]
fn f() {}

Expected for v6.13.

— https://lore.kernel.org/rust-for-linux/20240904204347.168520-1-ojeda@kernel.org/

https://lore.kernel.org/rust-for-linux/20240904204347.168520-1-ojeda@kernel.org/

--check-cfg

Checks conditional compilation names and values.

An example of simple, effective collaboration between the kernel and Rust.

We tested the feature early on when they requested feedback.

We found an ergonomics issue with the kernel’s ~20k cfg’s.

They made sure it worked for the kernel case.

The feature was stabilized in Rust 1.79.

We plan to use it soon!

— https://github.com/rust-lang/rust/pull/121202

https://github.com/rust-lang/rust/pull/121202

Coccinelle for Rust

Major Changes

Added the ... construct, allowing matching of arbitrary control flow paths.

Disjunctions can now be much more complicated, and not restricted to only expressions.

Addition of the more powerful CTL-VW engine which standardizes the matching process into
“CTL formulas”.

Minor Changes

Better error reporting and handling.

Post-transformation formatting improved.

Visualization of Control Flow and CTL formulas added.

More compact representation of ASTs.
— Tathagata Roy

— https://rust-for-linux.com/coccinelle-for-rust
— https://lpc.events/event/18/contributions/1787/

https://rust-for-linux.com/coccinelle-for-rust
https://lpc.events/event/18/contributions/1787/

Coccinelle for Rust

Challenges

Parsing problems due to the internal representation of ... and
disjunctions.

Macro formatting.

Complex CFG representation.

Limited parallelization capabilities due to the thread-unsafe structure of
rowan syntax nodes.

— Tathagata Roy
— https://rust-for-linux.com/coccinelle-for-rust

— https://lpc.events/event/18/contributions/1787/

https://rust-for-linux.com/coccinelle-for-rust
https://lpc.events/event/18/contributions/1787/

bindgen

John Baublitz’s bindgen improvements for Rust for Linux:

Functional C macros expansion:

https://github.com/rust-lang/rust-bindgen/issues/753
https://github.com/rust-lang/rust-bindgen/pull/2779
https://github.com/rust-lang/rust-bindgen/pull/2823

Released in 0.70.0.

Raw pointer access for bitfields:

https://github.com/rust-lang/rust-bindgen/issues/2674
https://github.com/rust-lang/rust-bindgen/pull/2876

New mapping for C enums — Rust enums, but sound (with safe and unsafe conversions):

https://github.com/rust-lang/rust-bindgen/issues/2646
https://github.com/rust-lang/rust-bindgen/pull/2908

In a similar way to Rust, bindgen will include the kernel in its CI.

— https://kangrejos.com

https://github.com/rust-lang/rust-bindgen/issues/753
https://github.com/rust-lang/rust-bindgen/pull/2779
https://github.com/rust-lang/rust-bindgen/pull/2823
https://github.com/rust-lang/rust-bindgen/issues/2674
https://github.com/rust-lang/rust-bindgen/pull/2876
https://github.com/rust-lang/rust-bindgen/issues/2646
https://github.com/rust-lang/rust-bindgen/pull/2908
https://kangrejos.com

Sponsors & Industry support

Sponsors & Industry support

— https://rust-for-linux.com/sponsors
— https://rust-for-linux.com/industry-and-academia-support

— https://www.memorysafety.org/initiative/linux-kernel/
— https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

https://rust-for-linux.com/sponsors
https://rust-for-linux.com/industry-and-academia-support
https://www.memorysafety.org/initiative/linux-kernel/
https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

Who uses Rust for Linux?

Upstreamed users:

PHY drivers: Asix PHYs (first “Rust reference driver”) and AMCC QT2025 PHY.

Null Block driver.

DRM panic screen QR code generator.

Users targeting upstream:

Android Binder driver.

Apple AGX GPU driver.

NVMe driver.

Nova GPU driver.

...and other efforts (e.g. tarfs, erofs, PuzzleFS, codec libraries, regulator driver, DSI panel driver...).

— https://rust-for-linux.com‘s “Users” section
— https://rust-for-linux.com/rust-reference-drivers

https://rust-for-linux.com
https://rust-for-linux.com/rust-reference-drivers

Topic branches

Focused on a particular topic and meant to enable collaboration on code that
is targeted for upstreaming but has not reached mainline yet.

Some of these branches may contain work-in-progress code (similar to
staging trees) that may not be suitable for upstreaming or general usage yet.

staging/rust-pci Danilo Krummrich
staging/rust-net Trevor Gross and Valentin Obst
staging/rust-device Danilo Krummrich and Philipp Stanner
staging/dev Danilo Krummrich and Philipp Stanner

— https://rust-for-linux.com/branches

https://docs.kernel.org/process/2.Process.html?highlight=staging#staging-trees
https://rust-for-linux.com/branches

“Rust reference drivers”

Some kernel subsystems maintainers are open to the idea of experimenting
with Rust, but they may want to start simple with a driver they are familiar
with. But such a driver would violate the "no duplicate drivers" rule.

Similarly, external people have expressed an interest in writing Rust drivers,
but given the required abstractions are not there, they may decide to wait. But
if nobody writes a first use case, the abstractions cannot be merged without
breaking the "no code without an expected in-tree user" rule.

Rust reference drivers are a solution to these deadlocks: they are drivers
that subsystem maintainers are allowed to introduce in their subsystem
without dropping the existing C driver.

— https://rust-for-linux.com/rust-reference-drivers
— [MAINTAINERS SUMMIT] The Rust Experiment

https://rust-for-linux.com/rust-reference-drivers
https://lore.kernel.org/ksummit/CANiq72=99VFE=Ve5MNM9ZuSe9M-JSH1evk6pABNSEnNjK7aXYA@mail.gmail.com/

“Rust reference drivers”

To bootstrap abstractions for new drivers, i.e. not the "duplicate"/"rewritten" one, but future new
drivers that would use those abstractions; while avoiding breaking the "no dead code" rule.

To serve as a reference for existing C maintainers on how such drivers would look like in Rust, as
"live" documentation, e.g. like how LWN featured a 1:1 comparison between a C and Rust driver.
And it has to be buildable at all times.

To use all the in-tree kernel infrastructure and to prepare their subsystem for Rust over time, e.g.
setting up tests and CI.

To learn over time, especially for subsystems that have several maintainers where not everybody
may have time for it at a given moment. Reading Rust patches from time to time for APIs one is
familiar with can help a lot.

And, most importantly, to evaluate if the effort is worth it for their subsystem.

— https://rust-for-linux.com/rust-reference-drivers
— [MAINTAINERS SUMMIT] The Rust Experiment

https://lwn.net/Articles/863459/
https://rust-for-linux.com/rust-reference-drivers
https://lore.kernel.org/ksummit/CANiq72=99VFE=Ve5MNM9ZuSe9M-JSH1evk6pABNSEnNjK7aXYA@mail.gmail.com/

DRM.

Netdev.

Block (“Stage 1”, i.e. breakage allowed).

Timekeeping, hrtimer.

Driver core.

Workqueue.

Kbuild.

Module support.

KUnit, kselftest.

Architectures: LoongArch, arm64, RISC-V, MIPS.

pahole.

...

More maintainers & subsystems getting involved

Aakash Sen Sharma
Alexander Pantyukhin
Alexey Dobriyan
Alex Mantel
Alice Ryhl
Anders Roxell
Andrea Righi
Andreas Hindborg
Andrew Ballance
Andrey Konovalov
Antonio Hickey
Ariel Miculas
Arnaldo Carvalho de Melo
Asahi Lina
Aswin Unnikrishnan
Ayush Singh
Bagas Sanjaya
Ben Gooding
Benno Lossin
Björn Roy Baron
Boqun Feng
Bo-Wei Chen
Breno Leitao
Carlos Bilbao
Charalampos Mitrodimas
Christian Marangi
Christian Schrefl
Christina Quast
Conor Dooley

Doubled the patch series submitters
Costa Shulyupin
Daniel Almeida
Danilo Krummrich
David Gow
David Rheinsberg
Dirk Behme
Ethan D. Twardy
Felipe Alves
Filipe Xavier
Fiona Behrens
Francesco Zardi
FUJITA Tomonori
Gary Guo
Guillaume Plourde
Helen Koike
Hridesh MG
Ian Rogers
Jamie Cunliffe
Jiapeng Chong
Jiaxun Yang
Jiri Olsa
Jocelyn Falempe
John Hubbard
Jon Mulder
Jubilee Young
Laine Taffin Altman
Laura Nao
Lyude Paul
Maíra Canal

Manmohan Shukla
Martin Rodriguez Reboredo
Masahiro Yamada
Mathys-Gasnier
Matteo Croce
Matt Gilbride
Matthew Leach
Matthew Maurer
Michael Ellerman
Michael Vetter
Michal Rostecki
Michele Dalle Rive
Miguel Ojeda
Mika Westerberg
Mitchell Levy
Neal Gompa
Nell Shamrell-Harrington
Nick Desaulniers
Obei Sideg
Olof Johansson
Paran Lee
Patrick Blass
Patrick Miller
Pierre Gondois
Qingsong Chen
Roland Xu
Roy Matero
Sami Tolvanen
Sarthak Singh

SeongJae Park
Sergio González Collado
Siddharth Menon
Suren Baghdasaryan
Thomas Bamelis
Thomas Bertschinger
Thorsten Blum
Timo Grautstück
Trevor Gross
TruongSinh Tran-Nguyen
Valentin Obst
Vinay Varma
Vincent Woltmann
Vincenzo Palazzo
Viresh Kumar
Vlastimil Babka
WANG Rui
Wedson Almeida Filho
Wei Liu
Wu XiangCheng
Yang Yingliang
Yanteng Si
Yiyang Wu
Yutaro Ohno
Zehui Xu
Zheng Yejian
Zigit Zo

Maintainers Summit

My takeaway is:

Encourage maintainers to experiment and merge code.

Do not worry too much about mistakes until one has an actual user.

Iterating in-tree and/or seeing early approaches may help maintainers.

Different subsystems may want to approach things differently.

Breaking Rust code may be a fine approach for a subsystem.

It is OK if it takes a couple years for everybody to get comfortable.

— https://lwn.net/Articles/990740/

https://lwn.net/Articles/990740/

Kangrejos

● The Rust for Linux Workshop

● An event where people involved in the
Rust for Linux discussions can meet in
a single place before LPC.

● https://kangrejos.com

● https://lwn.net/Archives/ConferenceIndex/
#Kangrejos

https://kangrejos.com
https://lwn.net/Archives/ConferenceIndex/#Kangrejos
https://lwn.net/Archives/ConferenceIndex/#Kangrejos

Kangrejos 2022, Oviedo, Spain

Kangrejos 2023, Gijón, Spain
— https://kangrejos.com

https://kangrejos.com

Kangrejos 2024, Copenhagen, Denmark
— https://kangrejos.com

https://kangrejos.com

Rust for Linux

Miguel Ojeda
ojeda@kernel.org

Backup slides

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Safe Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

bindgen

bindings
crate

Rust tree Linux tree

