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regressions: our workflows 
are the biggest enemy

 



  

[1. maintainers summit
two days ago]

what was discussed and decided



  

a lot and nothing ;-)
hard to summarize, but was a good discussion



  

Linus is willing to ack
a few docs describing
what's expected from

developers and maintainers



  

Linus wants everything from current 
cycle fixed by -rc6



  

Linus wants regressions
fixed quickly that hit

versions deemed for end users



  

Linus thinks -next not that important 
for regression fixes

one or two days good idea for CIs! 



  

[2. regzbot]
(my regression tracking bot)



  

halted development
a few months ago, to be precise



  

last big features not widely 
announced yet



  

new feature:
support for monitoring issue

trackers from gitlab and github



  

new feature:
support for updating regzbot data

without replying to the report



  

new feature:
a few quality of life improvements;

more needed



  

missing
a few minor but kinda important things

that would be really useful
like adding something to the tracking

while posting a fix for the problem



  

missing
subsystem specific views
into tracked regression

(reports & websites)



  

missing
better interactions with CIs



  

missing
a lot of other things people asked for



  

various reasons why
development was stopped

[for the moment]



  

future: should get better



  

[3. why do regressions happen]



  

because kernel developers
are human ;-)



  

because the kernel is mainly drivers 
and thus hard to test



  

mainline: because fixing regressions
takes too long



  

[no silver bullet to solve this, as its
caused by various small issues that

on its own look negligible]



  

stable: because stable team has
no access to tests subsystem 

maintainers usually run



  

stable: stable team unable to reliably 
distinct fixes worth backporting from 

those it should ignore



  
https://docs.kernel.org/process/stable-kernel-rules.html



  

stable: stable team unable
to distinct fixes worth prioritizing

from those better delayed



  
https://docs.kernel.org/process/stable-kernel-rules.html



  

stable: because changes are
backported rather quicky



  

stable team has no simple way to 
detect if fixes are part of a patch-set



  

stable team has no way to detect if 
fixes implicitly depend on changes 

mainlined earlier



  

[4. workflow problems]



  

most kernel developers
are doing a great job!



  

most kernel maintainers
are even doing a hell of a job!



  

many many thx to everyone
for their upstream work!



  

do not want to criticize
anybody's work in this talk



  

I want to point out
issues with *our process*



  

because no change or
not even discussing it properly

due to fear of downsides
leads to downfalls of empires



  

"workflows are the biggest enemy":

 



  

"workflows are the biggest enemy":

there is no workflow for
handling regressions 🥴



  

Everybody works with different 
interpretations of LKML mails from Linus, 
mixed with a combination of rules either 
global or subsystem-specific, official or 
unofficial, written or unwritten, some of 

which are outdated or contradicting each 
other -- while being free to not care at all if 

a regressions made it into a release 
deemed for end users. 



  

Everybody works with different 
interpretations of varying subsets of LKML 
mails from Linus, mixed with a combination 

of rules either global or subsystem-
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to not care at all if a regressions made it 
into a release deemed for end users. 
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Everybody works with different 
interpretations of varying subsets of LKML 
mails from Linus, mixed with a combination 

of rules either global or subsystem-
specific, official or unofficial, written or 

unwritten, some of which are outdated or 
contradicting each other – while being free 
to not care at all if a regressions made it 

into a release deemed for end users. 



  

let me illustrate the problem
with the audience



  

A patch is merged for 6.10-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10-rc5?



  

A patch is merged for 6.10-rc1;
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A patch is merged for 6.10-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10-rc5?



  

A patch is merged for 6.9-rc1;  
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10-rc5?



  

A patch is merged for 6.9-rc1;  
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc6 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10-rc7?



  

A patch is merged for 6.9-rc1;  
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc7 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10?       



  

A patch is merged for 6.6-rc1;  
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc7 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10?       



  

A patch is merged for 6.1-rc1;  
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed, 
and merged to a subsystem tree on the

Friday before 6.10-rc7 comes out.
Should it be send to Linus the following 

Friday for mainlining into 6.10?       



  
https://lore.kernel.org/all/CAHk-=wis_qQy4oDNynNKi5b7Qhosmxtoj1jxo5wmB6SRUwQUBQ@mail.gmail.com/



  
https://lore.kernel.org/all/CAHk-=wis_qQy4oDNynNKi5b7Qhosmxtoj1jxo5wmB6SRUwQUBQ@mail.gmail.com/



  
https://lore.kernel.org/all/CAHk-=wis_qQy4oDNynNKi5b7Qhosmxtoj1jxo5wmB6SRUwQUBQ@mail.gmail.com/



  

A lot of regressions despite the
lack of agreed on guidelines

are handled quite well –



  

many regression are fixed within
one, two, or three weeks 😃



  

others take three months 😟
& are never fixed in the series in

which they were introduced 



  

others take three months 😟
and/or are never fixed in the series 
in which they were introduced 😠



  

A lot of regressions despite the
lack of agreed on guidelines

are handled quite well –



  

A lot of regressions despite the
lack of agreed on guidelines

are handled quite well –
but many leave a lot to wish for, too.



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.
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A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
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A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Monday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc3.

 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc4.

 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after one and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc5.

 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

 



  
https://git.kernel.org/torvalds/c/6cd90e5ea72f35



  
https://lore.kernel.org/all/CAHk-%3Dwinf5CvEvEGMUQmEYWFtp9b6YE0%2BSwhVTB89OpHRS_ZEA@mail.gmail.com/



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

 
 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some subsystems take
a long time to review, commit, or mainline fixes



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some subsystems lack
workforce to review, commit, or mainline faster



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some sub-subsystems see
no urgency



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: submitted regression fixes
often look like any other patch 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some maintainers don't want to
send Linus or their upstream a PR with just one fix



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: maintainers send PRs
shortly after a new -rc



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

 
 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: different assumptions on how
long patches should be in -next



  

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

should this be send to Linus for inclusion in 6.10
right before its release?



  

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

should this be send to Linus for inclusion in 6.10
right before its release?

workflow problem: some devs/maintainers are too careful 
when it comes to mainlining last minute regression fixes



  

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Friday it then is committed to a subsystem tree;
it thus never makes it to -next;

should this be send to Linus for inclusion in 6.10
right before its release?

  
 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Friday it then is committed to a subsystem tree;
it thus never makes it to -next;

should this be send to Linus for inclusion in 6.10
right before its release?

workflow problem: developers are unsure if sending fixes
to Linus that never have been in -next



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 

 [reset to the one week example] 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

workflow problem: reporting



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 
 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

*usually not* a problem: developing a fix 😃
 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after five weeks of debugging, tests et. al. no fix is found and 

developers decide to apply a revert;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc7.



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after five weeks of debugging, tests et. al. no fix is found and 

developers decide to apply a revert;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc7.

workflow problem: some developers try hard to avoid reverts
 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 

 [reset to the one week example] 



  

A patch is merged for 6.9-rc1;
on Tuesday morning after the 6.10-rc6 release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it then is send to Linus during the next merge window;
Linus picks it up for 6.11-rc1.



  

A patch is merged for 6.6-rc1;
on Tuesday morning after the 6.10-rc6 release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it then is send to Linus during the next merge window;
Linus picks it up for 6.11-rc1.



  

A patch is merged for 6.6-rc1;
on Tuesday morning after the 6.10-rc6 release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it then is send to Linus during the next merge window;
Linus picks it up for 6.11-rc1.

workflow problem: some devs unsure where to queue fixes for 
older regressions: for the current or next cycle?



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 

 [reset to the one week example] 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 

 [and compress content and formatting it a little] 



  

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after six weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc6.

 



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after six weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: no elevated handling for regressions that 
recently made it into a release deemed for end users 



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

 workflow problem: no elevated handling for regressions that 
recently made it into a release deemed for end users 



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but no 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

 



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but no 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: fixes tags are sometimes
are missing or wrong



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

related workflow problem: a lot of developers assume Fixes: 
tags suffice to initiate backporting – which they don't!



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: some subsystems opted-out of
backporting commits with 'Fixes:' tag



  

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.
related workflow problem: participating in stable(*) kernel 
maintenance is entirely optional for mainline developers

(*) this here and later means longterm aka LTS kernels as well



  

[everything up until
the previous slide

was about mainline]
  



  

[everything up until
the previous slide

was about mainline]
We just entered stable/longterm territory!



  

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

 
 



  

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: people report such bugs to the stable list 
 



  

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: mainline devs might not care because they 
might suspect its a bug stable bug introduced in 6.9.1 or 6.9.2 



  

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: mainline developers not even in
this case are obliged to set a stable tag



  

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never 
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: mainline developers assume
a Fixes: tag is enough



  

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

 
 



  

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

 
 



  

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

  workflow problem: mainline devs do not have to care about 
stable and might wait till the end of the cycle to fix the problem



  

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

  workflow oddity: stable team normally does not revert a 
backported change, if it causes the same problem in mainline



  
https://lore.kernel.org/all/2024080325-blaming-lid-5f0d@gregkh/



  

Thorsten's wishlist



  

guielines or something like that that describes 
Linus' expectations for everyone involved



  

wishlist (1/4):
● developers…

● …react quickly to regressions reports

● …provide at least some debugging aid when needed 

● …prioritize resolving mainline regressions over almost all other upstream work

● …prioritize regressions even more if they recently made it into a release 
deemed for end users

● …CCs the regression list when replying [bonus points]

● …tell regzbot about the report [many bonus points]



  

wishlist (2/4):
● developers…

● …try to quickly provide a fix

● opt for a revert if a fix comes not in sight within few days

● …add all tags required, recommended, or helpful:

Reported-by: for all reports
Link: / or Closes: for all reports
Tested-by:
Fixes: for all commits directly or indirectly fixed
Cc: <stable@vger.kernel.org> [when appropriate]
[Cc: <regressions@lists.kernel.org>?]   



  

wishlist (3/4):

● reviewers…
● …try to quickly review fixes 

● …prioritize regression fixes

● …check or the stuff mentioned earlier



  

wishlist (4/4):
● maintainers…

● …commit reviewed fixes for recent regressions quickly

● …when needed mainline urgent fixes within a day or two or ask Linus

● …usually mainline all fixes at the end of the week (Fri/Sat/Sun)

● …sometimes even mainline fixes that not have been in -next

● …have -fixes and -for-next branches that both are in –next [bonus points]

● …only queue really dangerous fixes or fixes for non-recent regressions for the 
next merge window



  

that's it; questions?



  

Thorsten Leemhuis

mail: linux@leemhuis.info
GPG Key: 0x72B6E6EF4C583D2D

#fediverse: @kernellogger@fosstodon.org (en), 
@knurd42@social.linux.pizza  (en)

#EOF
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