
Thorsten Leemhuis

regressions: our workflows
are the biggest enemy

[1. maintainers summit
two days ago]

what was discussed and decided

a lot and nothing ;-)
hard to summarize, but was a good discussion

Linus is willing to ack
a few docs describing
what's expected from

developers and maintainers

Linus wants everything from current
cycle fixed by -rc6

Linus wants regressions
fixed quickly that hit

versions deemed for end users

Linus thinks -next not that important
for regression fixes

one or two days good idea for CIs!

[2. regzbot]
(my regression tracking bot)

halted development
a few months ago, to be precise

last big features not widely
announced yet

new feature:
support for monitoring issue

trackers from gitlab and github

new feature:
support for updating regzbot data

without replying to the report

new feature:
a few quality of life improvements;

more needed

missing
a few minor but kinda important things

that would be really useful
like adding something to the tracking

while posting a fix for the problem

missing
subsystem specific views
into tracked regression

(reports & websites)

missing
better interactions with CIs

missing
a lot of other things people asked for

various reasons why
development was stopped

[for the moment]

future: should get better

[3. why do regressions happen]

because kernel developers
are human ;-)

because the kernel is mainly drivers
and thus hard to test

mainline: because fixing regressions
takes too long

[no silver bullet to solve this, as its
caused by various small issues that

on its own look negligible]

stable: because stable team has
no access to tests subsystem

maintainers usually run

stable: stable team unable to reliably
distinct fixes worth backporting from

those it should ignore

https://docs.kernel.org/process/stable-kernel-rules.html

stable: stable team unable
to distinct fixes worth prioritizing

from those better delayed

https://docs.kernel.org/process/stable-kernel-rules.html

stable: because changes are
backported rather quicky

stable team has no simple way to
detect if fixes are part of a patch-set

stable team has no way to detect if
fixes implicitly depend on changes

mainlined earlier

[4. workflow problems]

most kernel developers
are doing a great job!

most kernel maintainers
are even doing a hell of a job!

many many thx to everyone
for their upstream work!

do not want to criticize
anybody's work in this talk

I want to point out
issues with *our process*

because no change or
not even discussing it properly

due to fear of downsides
leads to downfalls of empires

"workflows are the biggest enemy":

"workflows are the biggest enemy":

there is no workflow for
handling regressions 🥴

Everybody works with different
interpretations of LKML mails from Linus,
mixed with a combination of rules either
global or subsystem-specific, official or
unofficial, written or unwritten, some of

which are outdated or contradicting each
other -- while being free to not care at all if

a regressions made it into a release
deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other -- while being free

to not care at all if a regressions made it
into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other -- while being free

to not care at all if a regressions made it
into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other -- while being free

to not care at all if a regressions made it
into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other -- while being free

to not care at all if a regressions made it
into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other -- while being free

to not care at all if a regressions made it
into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other – while being free
to not care at all if a regressions made it

into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other – while being free
to not care at all if a regressions made it

into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other – while being free
to not care at all if a regressions made it

into a release deemed for end users.

Everybody works with different
interpretations of varying subsets of LKML
mails from Linus, mixed with a combination

of rules either global or subsystem-
specific, official or unofficial, written or

unwritten, some of which are outdated or
contradicting each other – while being free
to not care at all if a regressions made it

into a release deemed for end users.

let me illustrate the problem
with the audience

A patch is merged for 6.10-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10-rc5?

A patch is merged for 6.10-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10-rc5?

A patch is merged for 6.10-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10-rc5?

A patch is merged for 6.10-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10-rc5?

A patch is merged for 6.9-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc4 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10-rc5?

A patch is merged for 6.9-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc6 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10-rc7?

A patch is merged for 6.9-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc7 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10?

A patch is merged for 6.6-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc7 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10?

A patch is merged for 6.1-rc1;
two days after 6.10-rc1 is out someone

reports it causes a regression;
a straight-forward fix is posted, reviewed,
and merged to a subsystem tree on the

Friday before 6.10-rc7 comes out.
Should it be send to Linus the following

Friday for mainlining into 6.10?

https://lore.kernel.org/all/CAHk-=wis_qQy4oDNynNKi5b7Qhosmxtoj1jxo5wmB6SRUwQUBQ@mail.gmail.com/

https://lore.kernel.org/all/CAHk-=wis_qQy4oDNynNKi5b7Qhosmxtoj1jxo5wmB6SRUwQUBQ@mail.gmail.com/

https://lore.kernel.org/all/CAHk-=wis_qQy4oDNynNKi5b7Qhosmxtoj1jxo5wmB6SRUwQUBQ@mail.gmail.com/

A lot of regressions despite the
lack of agreed on guidelines

are handled quite well –

many regression are fixed within
one, two, or three weeks 😃

others take three months 😟
& are never fixed in the series in

which they were introduced

others take three months 😟
and/or are never fixed in the series
in which they were introduced 😠

A lot of regressions despite the
lack of agreed on guidelines

are handled quite well –

A lot of regressions despite the
lack of agreed on guidelines

are handled quite well –
but many leave a lot to wish for, too.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Monday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc3.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc4.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after one and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc5.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

https://git.kernel.org/torvalds/c/6cd90e5ea72f35

https://lore.kernel.org/all/CAHk-%3Dwinf5CvEvEGMUQmEYWFtp9b6YE0%2BSwhVTB89OpHRS_ZEA@mail.gmail.com/

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some subsystems take
a long time to review, commit, or mainline fixes

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some subsystems lack
workforce to review, commit, or mainline faster

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some sub-subsystems see
no urgency

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: submitted regression fixes
often look like any other patch

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: some maintainers don't want to
send Linus or their upstream a PR with just one fix

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: maintainers send PRs
shortly after a new -rc

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Monday morning;

during Friday it then is committed to a subsystem tree;
it makes it to -next a day later;

after two and a half weeks is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: different assumptions on how
long patches should be in -next

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

should this be send to Linus for inclusion in 6.10
right before its release?

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

should this be send to Linus for inclusion in 6.10
right before its release?

workflow problem: some devs/maintainers are too careful
when it comes to mainlining last minute regression fixes

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Friday it then is committed to a subsystem tree;
it thus never makes it to -next;

should this be send to Linus for inclusion in 6.10
right before its release?

A patch is merged for 6.10-rc1;
on Tuesday morning after 6.10-rc7 someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Friday it then is committed to a subsystem tree;
it thus never makes it to -next;

should this be send to Linus for inclusion in 6.10
right before its release?

workflow problem: developers are unsure if sending fixes
to Linus that never have been in -next

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 [reset to the one week example]

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

workflow problem: reporting

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

usually not a problem: developing a fix 😃

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after five weeks of debugging, tests et. al. no fix is found and

developers decide to apply a revert;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc7.

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after five weeks of debugging, tests et. al. no fix is found and

developers decide to apply a revert;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc7.

workflow problem: some developers try hard to avoid reverts

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 [reset to the one week example]

A patch is merged for 6.9-rc1;
on Tuesday morning after the 6.10-rc6 release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it then is send to Linus during the next merge window;
Linus picks it up for 6.11-rc1.

A patch is merged for 6.6-rc1;
on Tuesday morning after the 6.10-rc6 release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it then is send to Linus during the next merge window;
Linus picks it up for 6.11-rc1.

A patch is merged for 6.6-rc1;
on Tuesday morning after the 6.10-rc6 release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it then is send to Linus during the next merge window;
Linus picks it up for 6.11-rc1.

workflow problem: some devs unsure where to queue fixes for
older regressions: for the current or next cycle?

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
after debugging a straight-forward fix is posted on

Wednesday morning and tested within hours;
it then is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 [reset to the one week example]

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

 [and compress content and formatting it a little]

A patch is merged for 6.10-rc1;
on Tuesday morning after its release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it within a day or two is then send to Linus;
Linus picks it up for 6.10-rc2.

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after six weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc6.

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after six weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc6.

workflow problem: no elevated handling for regressions that
recently made it into a release deemed for end users

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

 workflow problem: no elevated handling for regressions that
recently made it into a release deemed for end users

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but no 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but no 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: fixes tags are sometimes
are missing or wrong

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

related workflow problem: a lot of developers assume Fixes:
tags suffice to initiate backporting – which they don't!

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: some subsystems opted-out of
backporting commits with 'Fixes:' tag

A patch is merged after 6.9-rc7;
on Tuesday morning after the 6.9 release someone reports

it causes a regression a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.
related workflow problem: participating in stable(*) kernel
maintenance is entirely optional for mainline developers

(*) this here and later means longterm aka LTS kernels as well

[everything up until
the previous slide

was about mainline]

[everything up until
the previous slide

was about mainline]
We just entered stable/longterm territory!

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: people report such bugs to the stable list

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: mainline devs might not care because they
might suspect its a bug stable bug introduced in 6.9.1 or 6.9.2

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: mainline developers not even in
this case are obliged to set a stable tag

A patch is merged after 6.9-rc7; on Tuesday morning
after the 6.10-rc1 release someone reports

it causes a regression in 6.9.2 a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after nine weeks in -next is then send to Linus;
Linus picks it up for 6.11-rc1.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…'; it's never
backported to 6.9.y or 6.10.y and reaches users only with 6.11.

workflow problem: mainline developers assume
a Fixes: tag is enough

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

 workflow problem: mainline devs do not have to care about
stable and might wait till the end of the cycle to fix the problem

A patch is merged after 6.10-rc1; on Wednesday it is
backported to 6.9.3 and right afterwards someone reports

it causes a regression in mainline and stable a revert is able to fix;
a straight-forward fix is reviewed by Thursday morning;

during Thursday it then is committed to a subsystem tree;
it makes it to -next a day later;

it after five weeks in -next is then send to Linus;
Linus picks it up for 6.10-rc7.

The fix contains a 'Fixes:…' tag, but not 'CC: <stable@…';
it a few days later is backported to 6.9.y.

 workflow oddity: stable team normally does not revert a
backported change, if it causes the same problem in mainline

https://lore.kernel.org/all/2024080325-blaming-lid-5f0d@gregkh/

Thorsten's wishlist

guielines or something like that that describes
Linus' expectations for everyone involved

wishlist (1/4):
● developers…

● …react quickly to regressions reports

● …provide at least some debugging aid when needed

● …prioritize resolving mainline regressions over almost all other upstream work

● …prioritize regressions even more if they recently made it into a release
deemed for end users

● …CCs the regression list when replying [bonus points]

● …tell regzbot about the report [many bonus points]

wishlist (2/4):
● developers…

● …try to quickly provide a fix

● opt for a revert if a fix comes not in sight within few days

● …add all tags required, recommended, or helpful:

Reported-by: for all reports
Link: / or Closes: for all reports
Tested-by:
Fixes: for all commits directly or indirectly fixed
Cc: <stable@vger.kernel.org> [when appropriate]
[Cc: <regressions@lists.kernel.org>?]

wishlist (3/4):

● reviewers…
● …try to quickly review fixes

● …prioritize regression fixes

● …check or the stuff mentioned earlier

wishlist (4/4):
● maintainers…

● …commit reviewed fixes for recent regressions quickly

● …when needed mainline urgent fixes within a day or two or ask Linus

● …usually mainline all fixes at the end of the week (Fri/Sat/Sun)

● …sometimes even mainline fixes that not have been in -next

● …have -fixes and -for-next branches that both are in –next [bonus points]

● …only queue really dangerous fixes or fixes for non-recent regressions for the
next merge window

that's it; questions?

Thorsten Leemhuis

mail: linux@leemhuis.info
GPG Key: 0x72B6E6EF4C583D2D

#fediverse: @kernellogger@fosstodon.org (en),
@knurd42@social.linux.pizza (en)

#EOF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141

