
1Arm Solutions at Lightspeed

Introducing the Power
Sequencing Subsystem
Kernel Summit, Linux Plumbers Conference

Vienna, Austria, 2024

Bartosz Golaszewski
Linaro

2Arm Solutions at Lightspeed

About me
● Linux kernel developer for the Qualcomm Landing Team at Linaro
● 15 years of embedded linux experience
● Maintainer of the GPIO subsystem
● Author and maintainer of libgpiod
● Open-source contributor to many other projects
● Interested in complex software architecture

3Arm Solutions at Lightspeed

is the software engine
of the arm Ecosystem
Linaro empowers rapid product deployment
within the dynamic arm Ecosystem.

Linaro has enabled trust, quality
and collaboration since 2010

Our cutting-edge solutions, services and collaborative platforms facilitate
the swift development, testing, and delivery of arm-based innovations,
enabling businesses to stay ahead in today’s competitive technology
landscape.

Linaro fosters an environment of collaboration, standardization and
optimization among businesses and open source ecosystems to
accelerate the deployment of arm-based products and technologies
along with representing a pivotal role in open source discovery and
adoption.

Automotive, Testing, Linux Kernel, Security, Cloud & Edge Computing,
IoT & Embedded, AI, CI/CD, Toolchain, Virtualization

4Arm Solutions at Lightspeed

Problem statement

5Arm Solutions at Lightspeed

Dynamic bus chicken-and-egg problem

6Arm Solutions at Lightspeed

Dynamic bus chicken-and-egg problem
● Certain devices on dynamic busses need to be powered-up before they can be

detected

7Arm Solutions at Lightspeed

Dynamic bus chicken-and-egg problem
● Certain devices on dynamic busses need to be powered-up before they can be

detected
● The drivers will not power up these devices unless they are detected

○ Typically the drivers binding to these devices handle the resources

8Arm Solutions at Lightspeed

Dynamic bus chicken-and-egg problem
● Certain devices on dynamic busses need to be powered-up before they can be

detected
● The drivers will not power up these devices unless they are detected

○ Typically the drivers binding to these devices handle the resources
● IOW We must power up the device to detect it but we must detect it to power it up

9Arm Solutions at Lightspeed

Sharing inter-dependent resources between
devices

10Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)

Sharing inter-dependent resources between
devices

11Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)
● Reference counting is not enough

Sharing inter-dependent resources between
devices

12Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)
● Reference counting is not enough
● Additional interactions between multiple devices must be considered

Sharing inter-dependent resources between
devices

13Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)
● Reference counting is not enough
● Additional interactions between multiple devices must be considered

○ Device may require a delay between enabling two resources

Sharing inter-dependent resources between
devices

14Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)
● Reference counting is not enough
● Additional interactions between multiple devices must be considered

○ Device may require a delay between enabling two resources
○ Resources may have a more complex dependency graph

Sharing inter-dependent resources between
devices

15Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)
● Reference counting is not enough
● Additional interactions between multiple devices must be considered

○ Device may require a delay between enabling two resources
○ Resources may have a more complex dependency graph
○ The actual power sequence may include specific timings

Sharing inter-dependent resources between
devices

16Arm Solutions at Lightspeed

● Certain devices share resources (regulators, resets, clocks, GPIOs)
● Reference counting is not enough
● Additional interactions between multiple devices must be considered

○ Device may require a delay between enabling two resources
○ Resources may have a more complex dependency graph
○ The actual power sequence may include specific timings

● Code reuse for complex power-up sequences shared by multiple drivers

Sharing inter-dependent resources between
devices

17Arm Solutions at Lightspeed

History

18Arm Solutions at Lightspeed

Previous attempts

19Arm Solutions at Lightspeed

Previous attempts
● MMC pwrseq

○ Source of regret for DT maintainers
○ Does the unspeakable in device-tree

20Arm Solutions at Lightspeed

Previous attempts
● MMC pwrseq

○ Source of regret for DT maintainers
○ Does the unspeakable in device-tree

● Power Sequencing subsystem by Dmitry Baryshkov
○ https://lore.kernel.org/netdev/20210829131305.534417-1-dmitry.baryshkov@linaro.org/
○ First attempt at enabling BT/WLAN chips in upstream
○ Shot down due to trying to do the unspeakable as well

https://lore.kernel.org/netdev/20210829131305.534417-1-dmitry.baryshkov@linaro.org/

21Arm Solutions at Lightspeed

Previous attempts
● MMC pwrseq

○ Source of regret for DT maintainers
○ Does the unspeakable in device-tree

● Power Sequencing subsystem by Dmitry Baryshkov
○ https://lore.kernel.org/netdev/20210829131305.534417-1-dmitry.baryshkov@linaro.org/
○ First attempt at enabling BT/WLAN chips in upstream
○ Shot down due to trying to do the unspeakable as well

● PCI slot/M.2 driver proposition at LPC 2023

https://lore.kernel.org/netdev/20210829131305.534417-1-dmitry.baryshkov@linaro.org/

22Arm Solutions at Lightspeed

Device-tree describes the
hardware itself, not its

behavior!

23Arm Solutions at Lightspeed

Example

// This is OK

foo {
compatible = "foobar";
enable-gpios = <&gpio0 0>;
vdd-supply = <&host_pmic_out0>;
resets = <&some_rst FOOBAR>;

};

// This is *NOT* OK

foo {
compatible = "foobar";
pwrseq = <&pwrseq_provider>;

};

24Arm Solutions at Lightspeed

Device-tree and driver code
don’t have to correspond to

each other 1:1

25Arm Solutions at Lightspeed

DT vs C
● Typically driver subsystems have common code handling device-tree nodes

○ For instance gpiochip_add_data() will parse the DT node looking for common GPIO
chip properties

26Arm Solutions at Lightspeed

DT vs C
● Typically driver subsystems have common code handling device-tree nodes

○ For instance gpiochip_add_data() will parse the DT node looking for common GPIO
chip properties

● This is just an implementation detail, there’s no rule that states that a DT node called
pmic@0 must become a regulator provider and that its driver must call
regulator_register()

27Arm Solutions at Lightspeed

DT vs C
● Typically driver subsystems have common code handling device-tree nodes

○ For instance gpiochip_add_data() will parse the DT node looking for common GPIO
chip properties

● This is just an implementation detail, there’s no rule that states that a DT node called
pmic@0 must become a regulator provider and that its driver must call
regulator_register()

● We can actually do whatever makes sense with a DT node as long as it keeps on correctly
describing the underlying hardware

28Arm Solutions at Lightspeed

High-level abstraction:
Power Sequencing

subsystem (pwrseq)

29Arm Solutions at Lightspeed

Power Sequencing subsystem concept

30Arm Solutions at Lightspeed

Power Sequencing subsystem concept
● Simple interface for consumers:

○ get()/put()
○ power_on/off()

31Arm Solutions at Lightspeed

Power Sequencing subsystem concept
● Simple interface for consumers:

○ get()/put()
○ power_on/off()

● Powerful for providers:
○ Concept of targets, units and dependencies
○ Run-time consumer <-> provider matching
○ Flexible interpretation of device nodes

■ May bind to nodes that would otherwise looks like they “belong” to a different
subsystem

32Arm Solutions at Lightspeed

Power Sequencing consumers
struct pwrseq_desc *desc;
int ret;

desc = pwrseq_get(dev, "foo");
if (IS_ERR(desc))

return PTR_ERR(desc);

ret = pwrseq_power_on(desc);
if (ret)

return ret;

ret = pwrseq_power_off(desc);
if (ret)

return ret;

pwrseq_put(desc);

33Arm Solutions at Lightspeed

Power Sequencing consumers
struct pwrseq_desc *desc;
int ret;

desc = pwrseq_get(dev, "foo");
if (IS_ERR(desc))

return PTR_ERR(desc);

ret = pwrseq_power_on(desc);
if (ret)

return ret;

ret = pwrseq_power_off(desc);
if (ret)

return ret;

pwrseq_put(desc);

dev is the consumer device, “foo” is the name of the pwrseq target

34Arm Solutions at Lightspeed

Power Sequencing consumers
struct pwrseq_desc *desc;
int ret;

desc = pwrseq_get(dev, "foo");
if (IS_ERR(desc))

return PTR_ERR(desc);

ret = pwrseq_power_on(desc);
if (ret)

return ret;

ret = pwrseq_power_off(desc);
if (ret)

return ret;

pwrseq_put(desc);

dev is the consumer device, “foo” is the name of the pwrseq target

struct pwrseq_desc is a proxy protecting the internal reference counting

35Arm Solutions at Lightspeed

Power Sequencing consumers
struct pwrseq_desc *desc;
int ret;

desc = pwrseq_get(dev, "foo");
if (IS_ERR(desc))

return PTR_ERR(desc);

ret = pwrseq_power_on(desc);
if (ret)

return ret;

ret = pwrseq_power_off(desc);
if (ret)

return ret;

pwrseq_put(desc);

dev is the consumer device, “foo” is the name of the pwrseq target

struct pwrseq_desc is a proxy protecting the internal reference counting

devm_pwrseq_get() is also available

36Arm Solutions at Lightspeed

Power Sequencing providers
● Unit

○ Discrete part of the power on/off sequence
○ Binary state: enabled/disabled

■ Enable state is counted
○ May have a list of dependencies

■ They must be enabled before this unit
■ This unit must be disabled before any of its dependencies

○ Examples:
■ Enable clock
■ Enable a GPIO
■ Deassert a reset

37Arm Solutions at Lightspeed

Power Sequencing providers
● Target

○ Named unit that can be selected by consumers
○ Consists of the “target” unit and its dependencies
○ Multiple targets may share parts of the power sequence: for instance the “bluetooth”

and “wlan” targets may share the “regulator-enable” unit
○ Examples:

■ “bluetooth” target
● “bluetooth-enable” is the target unit
● “bluetooth-enable” depends on “clock-enable”, “regulators-enable”

and “gpio-enable”

38Arm Solutions at Lightspeed

● Descriptor
○ Opaque handle provided to consumers that want to use the power sequencer
○ References a single target
○ Assigned by pwrseq_get()
○ Can only ever increase and decrease the enable count of a target by 1

Power Sequencing providers

39Arm Solutions at Lightspeed

Power Sequencing providers
cat /sys/kernel/debug/pwrseq
pwrseq.0:
 targets:
 target: [bluetooth] (target unit: [bluetooth-enable])
 target: [wlan] (target unit: [wlan-enable])
 units:
 unit: [regulators-enable] - enable count: 2
 unit: [clock-enable] - enable count: 2
 unit: [bluetooth-enable] - enable count: 1
 dependencies:
 [regulators-enable]
 [clock-enable]
 unit: [wlan-enable] - enable count: 1
 dependencies:
 [regulators-enable]
 [clock-enable]

40Arm Solutions at Lightspeed

Power Sequencing providers
● Run-time matching

○ Each provider driver provides a .match() callback
■ The functionality of this callback is entirely driver-specific

○ Consumer calls pwrseq_get()
○ The pwrseq core goes through the list of registered providers and calls the .match()

callback passing it the (potential) consumer device
○ If the function returns non-zero, we assume it’s a match

● Example matching mechanism:
○ We expect that the consumer takes the vdd-supply from the provider’s node
○ We parse the vdd-supply phandle and see if it exists and leads us to the provider node

41Arm Solutions at Lightspeed

Low-level abstraction: PCI
power control

42Arm Solutions at Lightspeed

PCI Power Control concept
&pcieport0 {

wifi@0 {
compatible = "pci17cb,1101";
...

};
};

43Arm Solutions at Lightspeed

PCI Power Control concept
&pcieport0 {

wifi@0 {
compatible = "pci17cb,1101";
...

};
};

PCI Core binds the DT node
to the matching PCI device

when it detects it on the host
bridge

44Arm Solutions at Lightspeed

PCI Power Control concept
&pcieport0 {

wifi@0 {
compatible = "pci17cb,1101";
...

};
};

PCI Core binds the DT node
to the matching PCI device

when it detects it on the host
bridge

A DT node can
be consumed

by multiple
devices

45Arm Solutions at Lightspeed

PCI Power Control concept
&pcieport0 {

wifi@0 {
compatible = "pci17cb,1101";
...

};
};

PCI Core binds the DT node
to the matching PCI device

when it detects it on the host
bridge

A DT node can
be consumed

by multiple
devices

Idea: Let’s create platform
devices for child nodes of the

host bridge and use their
platform drivers to power-up

the device

46Arm Solutions at Lightspeed

● Reuse DT nodes for known PCI devices
● Create platform devices that bind to these nodes
● Enable relevant resources
● Let PCI core know that it can now rescan the bus
● Let the platform device become the parent of the PCI device binding to the same node so

that the suspend/resume callbacks of the former are always called after/before those of the
latter respectively

PCI Power Control concept

47Arm Solutions at Lightspeed

● Minimal API
○ pci_pwrctl_device_set/unset_ready() + single configuration structure

● Populate platform devices for PCI of nodes when the host bridge is probed
● Mark the relevant OF node as reused to avoid pinctrl issues

PCI Power Control implementation

48Arm Solutions at Lightspeed

PCI Power Control implementation

PCI host bridge

49Arm Solutions at Lightspeed

PCI Power Control implementation

PCI host bridge

PCI port

Parent

50Arm Solutions at Lightspeed

PCI Power Control implementation

PCI host bridge

PCI pwrctl
platform device

Parent

PCI port

Parent

51Arm Solutions at Lightspeed

PCI Power Control implementation

PCI host bridge

PCI device

PCI pwrctl
platform device

Parent

PCI port

Parent

52Arm Solutions at Lightspeed

PCI Power Control implementation

PCI host bridge

PCI device

PCI pwrctl
platform device

Parent

PCI port

Parent

Parent

53Arm Solutions at Lightspeed

PCI Power Control implementation

PCI host bridge

PCI device

PCI pwrctl
platform device

Parent

Devlin
k

PCI port

Parent

Parent

54Arm Solutions at Lightspeed

By your powers combined:
pwrseq + PCI pwrctl

55Arm Solutions at Lightspeed

● All core pwrseq and PCI pwrctl code is in mainline and has been released as part of v6.11
● Some creases are still being ironed-out
● RB5, sm8650-qrd, sm8650-hdk, sm8550-qrd, sc8280xp-crd and X13s use pwrseq for

Bluetooth and WLAN
● Already got the first submission (although bad…) for a new pwrseq driver from Amlogic

which further proves that this is something that was needed for a long time
● Process needs to be improved

○ which tree should the DT bindings go through

Where are we at?

56Arm Solutions at Lightspeed

Q & A

57Arm Solutions at Lightspeed

Thank You!
Visit linaro.org

Contact me at:
bartosz.golaszewski@linaro.org

