
https://www.pengutronix.de

 Graceful Under Pressure: Prioritizing Shutdown to Protect Your Data in
Embedded Systems

Oleksij Rempel – ore@pengutronix.de

mailto:ore@pengutronix.de

 2/18

my_self = kzalloc()

 Oleksij Rempel, Linux Kernel Hacker
 Expertise in: Medical, Industrial and Agricultural devices
 Addressing challenges: Limited CPU/bandwidth, power

efficiency, diagnostic
 Prioritizing long-term sustainable, secure and Open

Source Embedded Linux (mainline).

 3/18

Power State Zero - It's All About Time (& load).

 Short interruptions can be
potentially handled by power
supply:

 Microseconds – capacitors may
handle it.

 Milliseconds – larger capacitors
and less load.

 Anything else need Battery,
UPS, Generator, etc. and SW
support.

 4/18

Not All Power Solutions Fit All Sizes.

 Size: Big systems fit big
solutions; small devices
can't.

 Cost: High cost for big
systems; impractical for
small.

 Embedded systems usually
do not have stable power
supply. (Cars, tractors,
systems emergency stop
switches)

 5/18

Why Can't You Just Use the 'Golden Brick'

 Size Constraints: Compact and
lightweight design limits component
choices.

 Environmental Durability: Must
endure extreme temperatures,
humidity, vibration, and dust.

 Cost-effectiveness leads to trade-
offs in performance and quality.

 Supply Chain Disruptions:
Alternative components due to
supply issues can affect performance
and reliability.

 6/18

Impact on Embedded Designs

 Affected Systems: Any embedded design lacking its
own battery backup is vulnerable to power
fluctuations.

 Common Storage Types at Risk:
 RAW NAND: Susceptible to corruption during power loss

without proper management.
 eMMC: May face issues if power fail management isn’t

robust.
 SD Cards: Can experience data loss or corruption during

unexpected power drops.

 7/18

Current state

 Some modern NANDs and eMMCs claim to be
hardened against this kinds of issues.

 Some system integrators have learned from past
experiences. Hardware and software-based
countermeasures are now included in new system
requirements.

 An upstream solution is needed to prevent reliance
on custom, proprietary hacks.

 8/18

Real life example - NAND

 Automotive design is using raw NAND. It is older
design, so older NANDs are used.

 Main requirement: system must be able to
shutdown immediately.

 Problem: If system is writing to the NAND on
power loss, corruption will occur. The system
should stop writing and pull write protection pin.

 Hack is implemented in Linux kernel downstream.

 9/18

Real life example - eMMC

 Similar story as with raw NAND with worse
outcome – eMMCs was bricked.

 Solution, system should stop writing and send
eMMC shutdown notification.

 10/18

What is the problem?

Storage shut down
Deadline

Storage shut down
Normal shutdown process

optimized shutdown process

 11/18

 Vendor Solutions for Power Failures

 Undervoltage Detection:
 Use extra circuits to detect under-voltage and power off

non-critical components (e.g., monitors).
 Custom Software:

 Vendors modify/hack Linux kernel or use management co-
processor to react on power drops. For example: safely
shut down storage devices within short time window.

 12/18

Initial Implementation for Upstream

 Use regulator framework to notify about system-
critical events (upstream).

 Execute under-voltage hardware protection shutdown
(upstream).

 Call eMMC shutdown with higher priority (not
upstream). Needed to shutdown storage within
100ms.

 Save shutdown reason to RTC clock (not upstream).

 13/18

Option 1 - Rework kernel/reboot.c

 https://lore.kernel.org/all/20231124145338.3112416-1-o.rempel@pengutronix.de/
 Implementation:

 Priority-Based Reverse Order Shutdown: The function shuts
down devices in reverse order of their initialization while also
considering their assigned shutdown priority levels. This ensures
that higher priority devices, such as storage, are shut down before
lower priority ones.

 Inherited Priorities: Devices inherit their shutdown priority from
their parent devices to maintain a consistent and safe shutdown
sequence.

 Priorities are statically assigned. Currently only 2 prios, “storage”
for eMMCs and “default” for all other devices.

 14/18

Option 1 - Rework kernel/reboot.c

 Pros:
 Integrated Solution: Directly modifies the existing reboot process in the

kernel, ensuring a unified approach to shutdown priorities.
 Centralized Control: Allows for global management of shutdown order,

potentially improving consistency across different subsystems.
 Cons:

 Complexity: Requires significant changes to the core kernel code,
which could introduce new bugs or maintenance challenges.

 Priority Assignment: Determining the correct priority for each
component could be difficult and may require extensive testing and
consensus

 15/18

Option 2 - Use existing register_reboot_notifier()

 Implementation:
 Reboot Notifier Registration: Drivers register reboot notifiers with priority by using

register_reboot_notifier(), ensuring they are included in the reboot notifier list for
shutdown.

 Kernel Shutdown Sequence: When the system prepares to power off,
kernel_power_off() is invoked, starting the shutdown process.

 Reboot Notifier Execution: blocking_notifier_call_chain(&reboot_notifier_list, ...) is called
before the general device shutdown, allowing registered drivers to execute critical code
earlier than in Option 1.

 Driver Shutdown Sequence: After the reboot notifiers are executed, the standard device
shutdown process follows, shutting down drivers in reverse order of their registration as
in Option 1.

 Currently there is no interface to configure priority from user space or
devicetree/ACPI/firmware :)

 16/18

Option 2 - Use register_reboot_notifier()

 Pros:
 Existing Mechanism: Leverages existing kernel infrastructure, reducing

the need for major code changes.
 Flexibility: Allows different drivers or subsystems to register their own

priorities, making the system more modular.
 Cons:

 Decentralized Management: Handling priorities across multiple
subsystems could lead to inconsistencies or conflicts.

 Priority Assignment: Similar to the first option, assigning priorities
effectively can be challenging and may vary based on use cases.

 17/18

Key Challenges in Both Options

 Priority Assignment
 Assigning priorities via Device Tree is not feasible for

systems using ACPI.
 Assigning static, board-specific priorities in user space is

cumbersome.
 Changing default priority for storage devices, may break

other systems.

 18/18

Other options ?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

