
Linux Plumbers Conference 2024

Contribution ID: 54 Type: not specified

Reduce synchronize_rcu() latency
Thursday, 19 September 2024 10:00 (45 minutes)

Read-copy update (RCU) ensures that any update carried out prior to the
beginning of an RCU grace period will be observed by the entirety of any
RCU reader that extends beyond the end of that grace period. Waiting for
grace periods is the purpose of the synchronize_rcu() function, which
waits for all pre-existing readers in a throughput-optimized manner
with minimal impact on real-time scheduling and interrupt latencies,
but which might well wait for many tens of milliseconds.

This synchronize_rcu() function is a key component of per-CPU
reader-writer semaphores, where it enables writers to wait until all
readers have switched to the writer-aware slow path. In the scheduler’s
CPU-deactivate code, synchronize_rcu() waits for all readers to become
aware of the inactive state of the outgoing CPU. A few other examples
uses include module unload, filesystem unmount, and BPF program updates.
Therefore, improving synchronize_rcu() latency should improve the latency
of a great many Linux-kernel components.

This talk will present an analysis of synchronize_rcu() latency that
identified issues during RCU callback floods, that is, high call_rcu()
invocation rates. These issues motivate a new approach that decouples
processing of synchronize_rcu() wakeups from the processing of RCU
callbacks. This approach provides from 3-22% improvements in launch
latency for an Android camera application when running on devices that
do not boot with synchronize_rcu() mapped to synchronize_rcu_expedited(),
a choice that might help avoid jitter in real-time applications.

However, there are currently a few downsides of this low-wait-latency
synchronize_rcu() implementation: (1) The global wait list will result
in excessive contention on systems with many CPUs; (2) Wakeups depend
on kworker execution which might degrade wait latency; (3) Wakeups are
carried out in LIFO order, and (4) Potential issues that might arise
from high synchronize_rcu() invocation rates, for which RCU’s existing
callback handling has been heavily optimized. Due to these downsides,
the current implementation is enabled only on systems such as embedded
devices having low CPU counts. Future work will address these downsides
in the hope that low-wait-latency synchronize_rcu() can be deployed by
default on all systems.

Primary authors: UPADHYAY, Neeraj; MCKENNEY, Paul (Meta); REZKI, Uladzislau

Presenters: UPADHYAY, Neeraj; MCKENNEY, Paul (Meta); REZKI, Uladzislau

Session Classification: Kernel Summit



Track Classification: Kernel Summit Track


