
Reduce synchronize_rcu() latency

Paul McKenney (Meta)
Uladzislau Rezki (Sony)
Neeraj Upadhyay (AMD)
LPC 2024, Vienna, Austria

What is RCU(Read-Copy update)

Think of RCU as something that defers work, with one work item per callback

- each callback has a function pointer and an argument;
- callbacks are queued on per-CPU lists, invoked after grace period;
- allow fast and scalable read-side access to shared data.

rcu_data ->next
->func

rcu_head
->next
->func

rcu_head
->next
->func

rcu_head

synchronize_rcu() overview

- synchronize_rcu() initialize and wait until a grace period has elapsed;
- A calling context is blocked;
- Depending on a workload it can take milliseconds;
- There are ~500 hundreds direct calls within the kernel(6.9.0-rc2);
- The latency of synchronize_rcu() depends strongly on kernel configuration:

For example how RCU is configured in your kernel:
- enabled/disabled CONFIG_RCU_NOCB_CPU;
- enabled/disabled CONFIG_RCU_LAZY;
- a boot parameter(rcupdate.rcu_expedited) that converts a normal synchronize_rcu() into

an expedited version. A drawback of such approach is a need to send out IPIs what can
affect a low-latency workloads and RT tasks.

synchronize_rcu() overview cont.

- A quiescent state(QS) concept - a state that CPU pases through, which means a
CPU is no longer in a read side critical section:

- tick;
- context switch;
- idle loop;
- user code;
- etc.

rcu_read_lock()

rcu_read_unlock()

R
ead side critical section

QS is reported after exit

RCU GP basics

read read read

read read

read read read

synchronize_rcu()
start

synchronize_rcu()
end

grace period

CPU-1

CPU-2

CPU-3

rcu_read_lock(
)

rcu_read_unlock()

pre-existing reads
report quiescent
stateReader is not accessing

any shared data structure

synchronize_rcu() issue

synchronize_rcu()

queue
wake-me-after-rcu

callback

request a new GP

sleep

continue

writer

wait for a new GP
request

GP thread

rcu_gp_init()

force quiescent
state(FQS) loop

rcu_gp_fqs_loop()

mark and propagate
GP end

CBs
execute

GP-kthread context caller context

GP is done

wake up

softirq/kthread

Bottleneck
in executing

CBs

synchronize_rcu() issue(cont.)

- An executing time of callbacks depends on:
- length of CB-list;
- how fast previous callbacks were completed;
- number of times callback invocation is paused;
- where in a list our wake-me-after-rcu callback is located;

cb cb cb cb cb ……. cb cb cb cb

our callback

1 1 000 000

synchronize_rcu() issue(cont.)

- On our mobile devices i can easily trigger the scenario when a callback is last in
the list out of ~3600 callbacks:

 <snip>
 <...>-29 [001] d..1. 21950.145313: rcu_batch_start: rcu_preempt CBs=3613 bl=28
 ...
 <...>-29 [001] 21950.152578: rcu_invoke_callback: rcu_preempt rhp=00000000b2d6dee8 func=__free_vm_area_struct.cfi_jt
 <...>-29 [001] 21950.152579: rcu_invoke_callback: rcu_preempt rhp=00000000a446f607 func=__free_vm_area_struct.cfi_jt
 <...>-29 [001] 21950.152580: rcu_invoke_callback: rcu_preempt rhp=00000000a5cab03b func=__free_vm_area_struct.cfi_jt
 <...>-29 [001] 21950.152581: rcu_invoke_callback: rcu_preempt rhp=0000000013b7e5ee func=__free_vm_area_struct.cfi_jt
 <...>-29 [001] 21950.152582: rcu_invoke_callback: rcu_preempt rhp=000000000a8ca6f9 func=__free_vm_area_struct.cfi_jt
 <...>-29 [001] 21950.152583: rcu_invoke_callback: rcu_preempt rhp=000000008f162ca8 func=wakeme_after_rcu.cfi_jt
 <...>-29 [001] d..1. 21950.152625: rcu_batch_end: rcu_preempt CBs-invoked=3612 idle=....
 <snip>

Summary

● The synchronize_rcu()function’s implementation depends on kernel configuration
● The behaviour depends on how your kernel is configured
● Per-cpu lists can be too long (almost 1 000 000 CBs)

○ run “rm -rf” on folder with small files on fast SSD storage + linux kernel compiling

rcuop/1-30 [008] D..1. 13483.560898: rcu_batch_start: rcu_preempt CBs=871001 bl=4200
rcuop/1-30 [008] D..1. 13483.820768: rcu_batch_end: rcu_preempt CBs-invoked=537691 idle=...R
...

● Execution path has limitations:
○ time(how long we execute callbacks)
○ reschedule points(to prevent hogging CPU)
○ batch threshold(how many CBs already executed)
○ where in a list “wakeme-after-rcu” callback is located

New approach of normal synchronize_rcu() call

● Decouple a “sync” callback from others
● Bypass common per-cpu cb-lists
● Maintain a separate track of “sync” callers only
● Do limited direct wake-ups from GP-kthread
● The rest is deferred to a dedicated worker to perform a final flush
● Unify the call. So, the behaviour does not depend on kernel configuration
● A new approach can be enabled/disabled in runtime

New approach of normal synchronize_rcu() call(cont.)

● There is a single lockless list
● It is used for handing synchronize_rcu() users
● rcu_synchronize nodes are enqueued to the llist
● At every GP init, a new wait-node is added:

○ it allows adding users and processing at the same time
● Within the llist, there are two tail pointers

○ wait tail - tracks the set of nodes, which need to wait for the current GP to complete
○ done tail - tracks the set of nodes, for which a GP has elapsed. These nodes processing will be

done as part of cleanup work executed by a kworker

A state machine and cases

head cb2 cb1

a. initial llist callbacks list

head cb2 cb1wait
head1

b. new GP1 starts

wait tail

c. GP completion

head cb2 cb1wait
head1

done tail

WAIT_TAIL == DONE_TAIL

to detach and process clients
(done by kworker)

two callbacks

A state machine and cases(cont.)
d. New callbacks and GP2 start

head cb4 cb3wait
head2

wait tail

wait
head1 cb2 cb1

done tail

GP2 GP1

new callbacksnew GP2 start

GP1 is done
(not processed yet)

A state machine and cases(cont.)

e. GP2 completion

head cb4 cb3wait
head2

done tail

wait
head1 cb2 cb1

GP2 GP1

GP1 is done (not processed yet)

WAIT_TAIL == DONE_TAIL

GP2 is done (not processed yet)

While transition from [d] to [e] state, a kworker
can observe either the old done tail [d] or new
done tail [e]:
1. if it sees an old done tail
2. newly queued work processes the updated

done tail

old done tail

A state machine and cases(cont.)
f. kworker callbacks processing complete

head wait
head2

done tail

head cb4 cb3wait
head2

done tail

wait
head1 cb2 cb1

GP2 GP1

kworker completed GP1 and GP2

completed

completed
NULL

initial state

wh1 is removed on a next round

A wait-dummy-node

● A wait-node is inserted on every GP:
○ This allows lockless additions of new users while the cleanup work executes;
○ Dummy-nodes are removed, in a next round of cleanup work execution

head cb2 cb1wh1 NULL

head cb3 wh1wh2

kworker sets wh1 to NULL, it is kept
in the list, cb2 and cb1 are completed

detach the tailkeep wh1 process cb2 cb1

NULL

kworker sets wh2 to NULL, it is kept
in the list, cb3 and wh1 is released for

later reuse

Practical example

● One user of synchronize_rcu() is a percpu-read-write-semaphore
● Locking for writing, uses synchronize_rcu(), so it is expansive
● CGROUP is a user of such per-cpu semaphore:

○ cgroup_threadgroup_rwsem is a per-CPU reader-writer semaphore. When migrating a process
with all its threads to another cgroup, it needs to WRITE lock this semaphore and block forks
and exits, which require the READ lock. The purpose is to make the “threadgroup” of a process
stable during the migration. Otherwise, there might be new threads in the old cgroup.

● Android uses CGROUP to classify tasks to different groups:
○ top-app, foreground, system-background, etc. For performance and power saving reasons.

Practical example(cont.)

/dev/cpuset

top-app foreground background

1 024 3567

Performormance core BIG cores Little cores

Tasks are moved between groups:

● to reduce app launch
latency(especially under
heavy background scenario);

● to save power.

Visible apps go to top-app or
foreground groups. Non visible go
back to background. As a user
changes between apps.

Performance CPU
4x time faster

Small CPU - 1000
Performance - 4000

CPUs efficiencies of different OPP levels

Practical example(cont.)

Camera app launch time comparison
- 50 iterations;
- time in milliseconds;
- blue is a default;
- red is a patched;
- sorted in ascending order;
- launch time: min/max/median

3% / 22% / 17%

Practical example(cont.)

4
5 #
6 #
7 ####
8 ############
9 ###############
10 ###############
11 ######################
12 ############
13 #################
14 #####################
15 ##
16 #############
17 ##########
18 ####
19 #######
20 ####
21 ##
22 ####
23 ###
24 #
26
27
28
30

6
7
8 #
9 ##
10 ###
11 #####
12 ##
13 ####
14 ######
15 ####################
16 ########
17 #############
18 ############
19 ##################
20 ########
21 ##########
22 ############
23 ###########################
24 ###########
25 #######
26 #########
27 #######
28 ####
29 ####
30 ##
31 ###
32 #

Latency distribution histogram(camera app. launch case 50 run)
Patch series on the left the default on the right

- 8 - 17 milliseconds
- 15 - 24 milliseconds

Next steps

This work has been merged into 6.10 merge window as a pull request but we still
have some open items to solve.

● Future works:
○ RCU callbacks need a tiny scheduler?

■ One of the possibilities is always putting synchronize_rcu() callback at the head of list:
https://lore.kernel.org/rcu/ZTlNogQ_nWUzVJ9M@boqun-archlinux/

○ potential sources of contentions like fixed wait-head-count
○ add per-cpu support
○ processing in a FIFO order

Use it!

https://lore.kernel.org/rcu/ZTlNogQ_nWUzVJ9M@boqun-archlinux/

Questions?

Thank you for attention!

