Linux Plumbers Conference 2024

Linux Plumbers Conference

Contribution ID: 168 Type: not specified

Verifying the Conformance of a VirtlO Driver to the
VirtlO Specification

Friday, 20 September 2024 15:15 (30 minutes)

VirtlO is a specification for virtual devices that describes how devices and drivers are defined and how they
interact. For example, the specification defines the steps that a driver has to follow to initialize a virtio-device.
The specification defines what is expected from a driver when communicating with a virtio-device. This
specification has been used to develop virtio-drivers and virtio-devices in different languages and technologies.
For example, QEMU implements virtio-devices in C. Rust-vmm implements virtio-devices in Rust. Recently,
the specification has been used to build virtio-devices in hardware. Also, there are different implementations
of the drivers depending on the operating system, e.g, Linux, Windows or baremetal. To ensure compatibility
between different implementations, developers must ensure that the implementation conforms to the VirtIO
specification. This is a manual task that relies on testing the implementation during different use cases. In this
talk, we present a proof-of-concept solution that aims to systematically verify that a virtio-driver conforms
to the VirtIO specification. During this exploratory work, we focus on a small section of the specification,
which is the device lifecycle VIRTIO_CONFIG_S_* status register state machine. This section specifies the
steps that a virtio-driver has to follow to initialize a virtio-device. We propose to encode these steps by using
the Clock Constraint Specification Language (CCSL). This is a formal language that allows expressing the
specification in terms of events and timing relationships between these events, e.g, causality. Then, we use
this specification to check whether a virtio-driver follows the VirtIO specification. To do this, we use the ftrace
interface to observe the execution of the virtio-driver. We apply our approach the traditional virtio memory
balloon device to manage guest memory. During the initialization of the driver, violations to the specification
are immediately informed to the user on the dmesg console. The aim of this talk is to present the approach
and to have face-to-face discussions and debate about the benefits, drawbacks and trade-offs. We report take
away lessons and present the tools to get the community familiar with the workflow.

Primary author: VARA LARSEN, Matias (Redhat)
Presenter: VARA LARSEN, Matias (Redhat)

Session Classification: Safe Systems with Linux MC

Track Classification: Safe Systems with Linux MC



