
Aspects of Dependable Linux
Systems

Kate Stewart, Linux Foundation
Philipp Ahmann, Etas GmbH (BOSCH)

Safe Systems with Linux MC

source: https://www.spacex.com/mission/source: https://www.tesla.com/ownersmanual

Linux is being used in Safety Critical
Systems today…

https://www.spacex.com/mission/
https://www.tesla.com/ownersmanual

What is functional safety?

Definition of Safety
The freedom from unacceptable risk of physical injury or of damage to the health of
people, either directly, or indirectly because of damage to property or the environment.

Definition of Functional Safety
The part of safety that depends on a system or equipment operating correctly in response
to its inputs.

Detecting potentially dangerous conditions, resulting either in the activation of a
protective or corrective device or mechanism to prevent hazardous events or in providing
mitigation measures to reduce the consequences of the hazardous event.

In Functional Safety you expect…

…that the software:

● does behave as specified,
● does not interfere or impair other system components
● and all possible erroneous events are addressed somehow or

somewhere.

And you have sufficient evidence to prove this.

Samples of safety (integrity) standards

● Standards represent industry best
practices developed over 50+ years

● Share similar demands for requirements
and evidence

● Rigor on measures/demands may differ

● All system parts need to be known,
tested and managed

IEC 61508
Generic Standard

IEC 62304
Medical Devices

DO178B/C
Aeronautics

ECSS Space
(ESA)

ISO 26262
Automotive

EN 50126/8/9
Aailways

IEC 61513
Nuclear Industry

IEC 61511
Industrial Process

IEC 62061 / ISO 13849
Machine Safety

ISO25119
Agriculture/Forestry

Standards seek to increase system quality

● Requirements (being explicit about assertions)
● Testing & Evidence
● Documentation
● Traceability

System with Safe Usage
Considerations

Component

A A A A A

Component

A A A A A

Component

A A A A A

Component

A A A A A

N N N N N N N N N

N N N N N

Component

A A A A A

Component

A A A A A

Component

A A A A A

N N N N N

Component

A A A A A

System with Safe Usage
Considerations

Component

A A A A A

Component

A A A A AOpen Source
ComponentComponent

A A A A A

N N N N N N N N N

N N N N N

Component

A A A A A

Component

A A A A A

Component

A A A A A

N N N N N

Linux
Kernel

Challenge with Safe Usage of Linux Kernel

Each patch has a reason for being added to tree - "what" & "why"
- frequently contained in patch series overview, but may be part of email discussion.
- Understanding "what" the code should do, is considered as a "requirement" on a component (like the

kernel) when doing functional safety system analysis.
- Testing the functionality for when it works, and when it does not work is needed as "evidence" that is

required to assess "Safe Usage".

Challenge: Linux Kernel does not have a way of systematically capturing the "what" code is expected
to do in a machine readable form.

If the "assertions about the code" (may be referred to as specifications or requirements) are
reverse engineered by others, where should they be stored, so they can be reviewed by
maintainers and other experts?

What mechanisms should be used to link the code & tests to these requirements?

Addressing:

Systems
Static Analysis
Code Coverage
Aequirements / Traceability

SBOM
System Engineering
Documentation

An afternoon towards "Safe Systems with Linux“

Safety Critical Systems

“Assessing whether a system is safe,
requires understanding the system sufficiently.”

● Understand your system element within that system context and how it is used in
that system.

● Select system components and features that can be evaluated for safety.

● Identify gaps that exist where more work is needed to evaluate safety sufficiently.

