
Source-based code coverage of
Linux kernel
Wentao Zhang

Tingxu Ren, Jinghao Jia, Darko Marinov, Tianyin Xu

1

Agenda

• (See a full presentation version LPC'24 Source based (full).pdf)

• Introduction to llvm-cov
• gcov vs. llvm-cov examples
• Discussions

2

https://lpc.events/event/18/contributions/1895/attachments/1643/3458/LPC'24%20Source%20based%20(full).pdf

Existing coverage tools in kernel

• KCOV
• Based on -fsanitize-coverage compiler flag
• Designed for fuzzing, only having rudimentary reports
• Relying on debuginfo etc. to map back to source code

• gcov
• Based on -fprofile-arcs -ftest-coverage compiler flags
• Designed for general coverage
• Relying on *.gcno files to map back to source code
• But reports can still be confusing (examples in later slides)

3

Both can only be approximately correlated to source code.
Both are susceptible to optimization.

Motivating example: idealized world

4

static struct drm_buddy_block *
__get_buddy(struct drm_buddy_block *block)
{
 struct drm_buddy_block *parent;

 parent = block->parent;
 if (!parent)
 return NULL;

 if (parent->left == block)
 return parent->right;

 return parent->left;
}

• What should an intuitive coverage report look like?

drivers/gpu/drm/drm_buddy.c

Line
coverage

N1
N1
N2

N1-N2
N3

N1-N2-N3

Line
coverage

N1
N1
N2

N1-N2
N3

N1-N2-N3

Motivating example: idealized world

5

static struct drm_buddy_block *
__get_buddy(struct drm_buddy_block *block)
{
 struct drm_buddy_block *parent;

 parent = block->parent;
 if (!parent)
 return NULL;

 if (parent->left == block)
 return parent->right;

 return parent->left;
}

• What should an intuitive coverage report look like?

drivers/gpu/drm/drm_buddy.c

“True” outcome taken ?? times
 “False” outcome taken ?? times

“True” outcome taken ?? times
 “False” outcome taken ?? times

N2
N1-N2

N3
N1-N2-N3

Branch
coverage

Line
coverage

N1
N1
N2

N1-N2
N3

N1-N2-N3

Motivating example: idealized world

5

static struct drm_buddy_block *
__get_buddy(struct drm_buddy_block *block)
{
 struct drm_buddy_block *parent;

 parent = block->parent;
 if (!parent)
 return NULL;

 if (parent->left == block)
 return parent->right;

 return parent->left;
}

• What should an intuitive coverage report look like?

drivers/gpu/drm/drm_buddy.c

“True” outcome taken ?? times
 “False” outcome taken ?? times

“True” outcome taken ?? times
 “False” outcome taken ?? times

N2
N1-N2

N3
N1-N2-N3

Branch
coverage

This is exactly our goal:
precise source correlation regardless of optimization level.

-: 105:static struct drm_buddy_block *
 -: 106:__get_buddy(struct drm_buddy_block *block)
 -: 107:{
 -: 108: struct drm_buddy_block *parent;
 -: 109:
 #####: 110: parent = block->parent;
 #####: 111: if (!parent)
 -: 112: return NULL;
 -: 113:
 12568*: 114: if (parent->left == block)
branch 0 never executed (fallthrough)
branch 1 never executed
branch 2 never executed (fallthrough)
branch 3 never executed
branch 4 never executed (fallthrough)
branch 5 never executed
branch 6 taken 9 (fallthrough)
branch 7 taken 1037
branch 8 taken 5226 (fallthrough)
branch 9 taken 6296
 5235*: 115: return parent->right;
 -: 116:
 -: 117: return parent->left;
 -: 118:}

gcov reports in reality

6drivers/gpu/drm/drm_buddy.c

● Setup
○ Kernel version: v6.10-rc7
○ Options

■ defconfig
■ CONFIG_KUNIT_ALL_TESTS
■ Default optimization level

○ Measurement span: kernel
boot with all KUnit tests

-: 105:static struct drm_buddy_block *
 -: 106:__get_buddy(struct drm_buddy_block *block)
 -: 107:{
 -: 108: struct drm_buddy_block *parent;
 -: 109:
 #####: 110: parent = block->parent;
 #####: 111: if (!parent)
 -: 112: return NULL;
 -: 113:
 12568*: 114: if (parent->left == block)
branch 0 never executed (fallthrough)
branch 1 never executed
branch 2 never executed (fallthrough)
branch 3 never executed
branch 4 never executed (fallthrough)
branch 5 never executed
branch 6 taken 9 (fallthrough)
branch 7 taken 1037
branch 8 taken 5226 (fallthrough)
branch 9 taken 6296
 5235*: 115: return parent->right;
 -: 116:
 -: 117: return parent->left;
 -: 118:}

gcov reports in reality

7

● Branch coverage:
○ A simple if statement is

reported to have 10 outcomes,
instead of 2

drivers/gpu/drm/drm_buddy.c

● Line coverage:
○ Executed line (#L114) shows up

after unexecuted line (#L110)

gcov notation Meaning

- The line contains no code

Unexecuted

llvm-cov and source-based code coverage

• Based on -fprofile-instr-generate -fcoverage-mapping flags
• Maintains dedicated mapping counter  source location

• Location includes both line and column

• Instrument at frontend thus not affected by optimization [1]
• Mapping is constructed at this stage and hence immutable
• Optimization passes preserve precise source-based coverage

8

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#impact-of-llvm-optimizatio
ns-on-coverage-reports

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#impact-of-llvm-optimizations-on-coverage-reports
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#impact-of-llvm-optimizations-on-coverage-reports

Compare gcov and llvm-cov reports

9

-: 105:static struct drm_buddy_block *
 -: 106:__get_buddy(struct drm_buddy_block *block)
 -: 107:{
 -: 108: struct drm_buddy_block *parent;
 -: 109:
 #####: 110: parent = block->parent;
 #####: 111: if (!parent)
 -: 112: return NULL;
 -: 113:
 12568*: 114: if (parent->left == block)
branch 0 never executed (fallthrough)
branch 1 never executed
branch 2 never executed (fallthrough)
branch 3 never executed
branch 4 never executed (fallthrough)
branch 5 never executed
branch 6 taken 9 (fallthrough)
branch 7 taken 1037
branch 8 taken 5226 (fallthrough)
branch 9 taken 6296
 5235*: 115: return parent->right;
 -: 116:
 -: 117: return parent->left;
 -: 118:}

105| |static struct drm_buddy_block *
 106| |__get_buddy(struct drm_buddy_block *block)
 107| 12.6k|{
 108| 12.6k| struct drm_buddy_block *parent;
 109| |
 110| 12.6k| parent = block->parent;
 111| 12.6k| if (!parent)

Branch (111:6): [True: 0, False: 12.6k]
 112| 0| return NULL;
 113| |
 114| 12.6k| if (parent->left == block)

Branch (114:6): [True: 5.27k, False: 7.37k]
 115| 5.27k| return parent->right;
 116| |
 117| 7.37k| return parent->left;
 118| 12.6k|}
 ...

gcov (–O2) llvm-cov (–O2)
drivers/gpu/drm/drm_buddy.c

 5: 1068: if (s == e || *e != '/' || !month || month > 12) {
branch 0 taken 5 (fallthrough)
branch 1 taken 0
branch 2 taken 5 (fallthrough)
branch 3 taken 0
branch 4 taken 0 (fallthrough)
branch 5 taken 5

 1068| 5| if (s == e || *e != '/' || !month || month > 12) {

 | Branch (1068:6): [True: 0, False: 5]
 | Branch (1068:16): [True: 0, False: 5]
 | Branch (1068:29): [True: 0, False: 5]
Branch (1068:39): [True: 0, False: 5]

More examples: missing branch outcomes

10

gcov
(–O2)

llvm-cov
(–O2)

drivers/firmware/dmi_scan.c:dmi_get_date

More examples: MC/DC

11

9120: 33: while (*a_prefix && *a == *a_prefix) {
condition outcomes covered 4/6
condition 1 not covered (false)
condition 2 not covered (false)

33| 1.53k| while (*a_prefix && *a == *a_prefix) {

 |---> MC/DC Decision Region (33:9) to (33:37)
 |
 | Number of Conditions: 2
 | Condition C1 --> (33:9)
 | Condition C2 --> (33:22)
[...]
 | MC/DC Coverage for Decision: 100.00%
 |

fs/xattr.c:strcmp_prefix

gcov
(–O2)

llvm-cov
(–O2)

Discussions

• Details of our “source-based code coverage” patch
• More information you’d like to see in the coverage report?
• What other tools you wish to have regarding test coverage?

• Precise control of the measurement span
• Others?

12LKML archive CI demo

13

Backup slides for
discussions

14

Example coverage report for KUnit tests

15
Summary page

Example coverage report for KUnit tests

16
lib/string.c (tested by string_kunit.c)

Line
coverage

MC/DC

Branch coverage

Branch coverage

Patch implementation

• Kbuild support
• CONFIG_LLVM_COV_KERNEL
• CONFIG_LLVM_COV_PROFILE_ALL

• Persist raw profiles in a freestanding environment
• With no real file system, no runtimes, no libraries, or system calls
• Pseudo file system interface

• /sys/kernel/debug/llvm-cov/profraw
• /sys/kernel/debug/llvm-cov/reset

• Reuse part of patch by Sami Tolvanen et al. “pgo: add clang's
Profile Guided Optimization infrastructure patches” [2]

• With different goals: performance optimization vs. precise coverage for
high assurance

17[2] https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/

Known limitations

• Link-time warnings “call to func() leaves .noinstr.text section”
• Possible solutions

• Modify LLVM inlining passes
• Add noinstr attribute to func()

• Spatial and temporal overhead
• Potential alleviations

• Separate information needed online and offline [3,4]
• Single byte counters [5]

18

[3] https://discourse.llvm.org/t/instrprofiling-lightweight-instrumentation/59113
[4] https://discourse.llvm.org/t/rfc-add-binary-profile-correlation-to-not-load-profile-metadata-
sections-into-memory-at-runtime/74565
[5] https://discourse.llvm.org/t/rfc-single-byte-counters-for-source-based-code-coverage/75685

https://discourse.llvm.org/t/instrprofiling-lightweight-instrumentation/59113
https://discourse.llvm.org/t/rfc-add-binary-profile-correlation-to-not-load-profile-metadata-sections-into-memory-at-runtime/74565
https://discourse.llvm.org/t/rfc-add-binary-profile-correlation-to-not-load-profile-metadata-sections-into-memory-at-runtime/74565
https://discourse.llvm.org/t/rfc-single-byte-counters-for-source-based-code-coverage/75685

Known limitations (MC/DC-specific)

• Compile-time warnings for large decisions
• Maximum configurable through Kbuild option

• Large decisions incur prohibitive section size and can exceed
KERNEL_IMAGE_SIZE

• Workarounds
• Measure on a per-subsystem basis
• Limit the number of conditions to be included

• Compile-time warnings for “split-nest” cases
• E.g. if (a && func(b && c))
• Can only be solved in LLVM upstream

19

Feedback in LKML

• (Thomas Gleixner) Unifying Makefile variables *COV_PROFILE
• Each *cov is implemented in different ways and separate lists are needed

• (Peter Zijlstra) noinstr attribute
• It is correctly respected by the current toolchain

20

Old PGO debates

• https://lore.kernel.org/lkml/202106281231.E99B92BB13@keesco
ok/

• Instrumentation (for precise coverage) vs. sampling (for profiling)
• perf is not complete for coverage measurement, also hard to map back

to source code

21

https://lore.kernel.org/lkml/202106281231.E99B92BB13@keescook/
https://lore.kernel.org/lkml/202106281231.E99B92BB13@keescook/

syzkaller discussion thread

• https://groups.google.com/g/syzkaller/c/JLX7ivDED5o
• Reuse KCOV interface

• Needs compiler changes

• Measure coverage for specific processes (e.g. tests issued from
user space) vs. overall execution

22

https://groups.google.com/g/syzkaller/c/JLX7ivDED5o

Future plan

• Support more architectures
• (Chuck Wolber) update LLVM intrinsics for more precise timing

control

23

Backup: KCOV community is seeing similar problems

24

We find the current llvm
coverage confusing as
well (in the context of
syzkaller/syzbot)

• Syzkaller mailing list discussion
https://groups.google.com/g/syzkaller/c/JLX7ivDED5o

• One future work direction: per-test coverage

https://groups.google.com/g/syzkaller/c/JLX7ivDED5o

Backup: complete quote from LLVM docs

25

LLVM optimizations (such as inlining or CFG simplification) should have no
impact on coverage report quality. This is due to the fact that the mapping from
source regions to profile counters is immutable, and is generated before the
LLVM optimizer kicks in. The optimizer can’t prove that profile counter
instrumentation is safe to delete (because it’s not: it affects the profile the
program emits), and so leaves it alone.

Note that this coverage feature does not rely on information that can degrade
during the course of optimization, such as debug info line tables.

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#impact-of-llvm-optimizatio
ns-on-coverage-reports

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#impact-of-llvm-optimizations-on-coverage-reports
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html#impact-of-llvm-optimizations-on-coverage-reports

Backup: quote from syzkaller docs

26

Coverage is based on tracing coverage points inserted into the object code by the compiler. A
coverage point generally refers to a basic block of code or a CFG edge (this depends on the compiler
and instrumentation mode used during build, e.g. for Linux and clang the default mode is CFG edges,
while for gcc the default mode is basic blocks). Note that coverage points are inserted by the compiler
in the middle-end after a significant number of transformation and optimization passes. As the result
coverage may poorly relate to the source code. For example, you may see a covered line after a non-
covered line, or you may not see a coverage point where you would expect to see it, or vice versa (this
may happen if the compiler splits basic blocks, or turns control flow constructs into conditional moves
without control flow, etc). Assessing coverage is still generally very useful and allows to understand
overall fuzzing progress, but treat it with a grain of salt.

https://github.com/google/syzkaller/blob/master/docs/coverage.md

https://en.wikipedia.org/wiki/Basic_block
https://en.wikipedia.org/wiki/Control-flow_graph
https://github.com/google/syzkaller/blob/master/docs/coverage.md

Backup: steps to reproduce these gcov examples

• https://github.com/xlab-uiuc/linux-mcdc/issues/7

27

https://github.com/xlab-uiuc/linux-mcdc/issues/7

Backup: full-kernel instrumentation overhead

• Machine: PowerEdge R650 (kindly provided by CloudLab)
• CPU: Two 36-core Intel Xeon Platinum 8360Y at 2.4GHz
• RAM: 256GB ECC Memory (16x 16 GB 3200MHz DDR4)

• Clang: snapshot 20240917071600
• For “apple-to-apple” comparison, here gcov is indeed Clang’s gcov

compatible mode, without MC/DC
• QEMU/KVM

28

Build time vmlinux size Boot time Boot time w/ KUnit

noinstr 53s 53M 2.25s 7.34s

gcov 1m10s 79M 2.40s 8.64s

llvm-cov 12m26s 1.3G 2.68s 9.80s

	Source-based code coverage of Linux kernel
	Agenda
	Existing coverage tools in kernel
	Motivating example: idealized world
	Motivating example: idealized world
	Motivating example: idealized world
	gcov reports in reality
	gcov reports in reality
	llvm-cov and source-based code coverage
	Compare gcov and llvm-cov reports
	More examples: missing branch outcomes
	More examples: MC/DC
	Discussions
	Slide Number 14
	Backup slides for discussions
	Example coverage report for KUnit tests
	Example coverage report for KUnit tests
	Patch implementation
	Known limitations
	Known limitations (MC/DC-specific)
	Feedback in LKML
	Old PGO debates
	syzkaller discussion thread
	Future plan
	Backup: KCOV community is seeing similar problems
	Backup: complete quote from LLVM docs
	Backup: quote from syzkaller docs
	Backup: steps to reproduce these gcov examples
	Backup: full-kernel instrumentation overhead

