

Improving kernel design
documentation and involving

experts

Gabriele Paoloni
Senior Principal Software Engineer -
Red Hat

Gabriele Paoloni
Senior Principal Software Engineer

Functional Safety
In-vehicle OS

Who am I ?

Agenda
● How we ended up here?

● Why documentation is important

● What are the aspects to be documented

● What we have in Linux today and how it maps to the different aspects

● Potential improvements and how to involve more experts in writing and
maintaining the documentation

How we ended up here?

This presentation is based on a
work-in-progress document that the Safety
Architecture working group in ELISA is working
on.

If you wish to join the discussion, sign up here:
https://lists.elisa.tech/g/safety-architecture

https://lists.elisa.tech/g/safety-architecture

Why documentation is important…

The core principles behind Software quality are:

● Defining the expected behavior of the code
and

● Providing sufficient verification evidences
against it

image from https://www.raintels.com/uploads/casestudies/17-sqa.jpg

https://www.raintels.com/uploads/casestudies/17-sqa.jpg

Why documentation is important…

How does documentation support the quality key
principles?

Main Objectives:
● Integrators (i.e. the users of Linux) need to rely on

documentation to understand the expected behaviour of
the code and assess it against their requirements

● Developers need to write patches in compliance with
the documented expected behaviour (or else they also
need to update the documentation of it)

● Testers need to design and run verification measures
on the basis of the documented expected behaviour (as
running verification measures based on the code is
expensive and it may lead to biased results)

image from https://pxhere.com/en/photo/608137

https://pxhere.com/en/photo/608137

What are the Software Architectural design aspects to be
documented?

In order to meet the main objectives from the previous slide, most of
quality and safety standards demand the following SW Architectural
design aspects to be documented

Static Design Aspects:
● Main Components and requirements/specifications allocated to

them
● SW/HW interfaces
● SW/HW resources

Dynamic Design Aspects:
- chain of events/behaviour
- the logical sequence of data processing
- control flow and data flow
- temporal constraints

And…any compile time or runtime configuration parameter
impacting the above mentioned aspects

image from https://www.8base.com/blog/saas-api

https://www.8base.com/blog/saas-api

Static Design Aspects:
● Main Components and requirements/specifications allocated to them.

- Integrator’s POV - From an integrator perspective the main components are the
interfaces exposed to the user. The relevant doc is:

- The Linux Manpage project:
- The Linux kernel user-space API guide
- The Linux kernel user’s and administrator’s guide
- The GNU C Library Reference Manual

Exported Kernel symbols shall be documented following the guidelines in
“Writing kernel-doc comments”

– Developer’s POV:
The main Kernel components are defined by the MAINTAINERs file
(drivers/subsystems)
The “most relevant” APIs can be documented following the guidelines in
“Writing kernel-doc comments”

cregit is a web based tool that can be used to retrieve commits associated with
a set of code lines and their respective mailing list discussions (that also
include the cover letter, if there is one).

What Linux provides WRT such aspects?

https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/
https://docs.kernel.org/userspace-api/index.html#the-linux-kernel-user-space-api-guide
https://docs.kernel.org/admin-guide/index.html
https://sourceware.org/glibc/manual/latest/html_mono/libc.html
https://www.kernel.org/doc/html/latest/doc-guide/kernel-doc.html
https://github.com/torvalds/linux/blob/master/MAINTAINERS
https://www.kernel.org/doc/html/latest/doc-guide/kernel-doc.html
https://cregit.linuxsources.org/

● SW/HW interfaces:
– Integrator’s POV - covered in the “Main Components” section
– Developer’s POV - dependencies between subsystems are lacking

documentation today (AFAIK). A possibility to effectively parse and
visualize dependencies is the ks-nav tool.

Firmware interfaces are documented in
“Documentation/devicetree/bindings”
and in the ACPI specifications for devicetree and ACPI based FW
respectively

● SW/HW resources
– Integrator’s POV - covered above in the “Main Components” section.

Relevant resources are documented as part of the user documentation
– Developer’s POV - From a developer perspective relevant SW/HW

resources can be documented following the members documentation
template, however such template does not enforce specifying which
subsystem or driver uses them. In order to fill this gap the ks-nav tool can
be used

What Linux provides WRT such aspects?

https://github.com/elisa-tech/ks-nav
https://www.kernel.org/doc/html/latest/doc-guide/kernel-doc.html#members
https://github.com/elisa-tech/ks-nav

What Linux provides WRT such aspects?

Dynamic Design Aspects:
- chain of events/behaviour
- the logical sequence of data processing
- control flow and data flow
- temporal constraints

Unfortunately today all aspects above are not enforced from a
Documentation template point of view. These aspects can be
documented, especially in the Overview sections or in the drivers’
or subsystems’ specific RST files, however there are no specific
template fields mapping to them.

Compile time or runtime configuration parameter:
TODO: We still need to analyse this aspect in the ELISA working
group.

https://www.kernel.org/doc/html/latest/doc-guide/kernel-doc.html#overview-documentation-comments

What Linux provides WRT such aspects?

Summary
There are tools that can be used to document or reverse
engineer the code to cover:
● Requirements/ Specifications
● Static Design Aspects
● Dynamic Design Aspects (even if the template is not optimal)

However
Are Drivers/Subsystems consistently documented?

DISCLAIMER!!!
We are not trying to enforce the Linux community to cover all
documentation aspects listed above, but instead we are trying to find
a common ground where documentation can be improved on some of
such aspects and where such improvements are acceptable to
maintainers

Some points think about:
● Tools to warn a contributor to also push a documentation update

and where it would be reasonable to do so (maybe patching
checkpatch?)

● What is the sync process between Kernel internal changes and the
manpage or glibc manual?

● Can we revisit cregit to have an option to parse right away the
patch series covers letters associated with a certain function (and
sort in chronological order)?

● Is there any change we can make to the Overview template to
enforce some architectural/design aspects?

● Any other reasonable change that you can think of?

(Open Discussion) How to involve more expert? How to better
meet the Software Architectural Design Objective?

image from https://printerval.com/

https://cregit.linuxsources.org/
https://www.kernel.org/doc/html/latest/doc-guide/kernel-doc.html#overview-documentation-comments
https://printerval.com/

