
Valentin Schneider <vschneid@redhat.com>

IPI Deferral

LPC 2024

1

IPI Deferral

2

▸ CPU Isolation, NOHZ_FULL, RCU_NOCB…

･ Single userspace task on isolated CPU

･ No (voluntary) kernel entry

▸ Some IPIs still end up hitting the isolated CPU

･ text_poke_sync() (static keys & friends)

･ vunmap()’s flush_tlb_kernel_range() (freeing / unmapping)

▸ Deferral concept: IPI doesn’t concern userspace?

･ Don’t send it

･ Execute related callback ASAP upon kernel entry

Context

IPI Deferral

3

[1]: https://lore.kernel.org/lkml/xhsmh4jn8y8vt.mognet@vschneid.remote.csb/

▸ Tracepoints for IPIs & remote callbacks (v6.4)

･ trace_ipi_send_{cpu,cpumask}
･ trace_csd_queue_cpu
･ trace_csd_function_{entry, exit}

▸ Free extra: use ftrace synthetic events + histograms to compute CSD delivery time [1]

▸ Ftrace tweaks to filter by cpumask (v6.6)

Progress so far

trace-cmd record -e 'sched_switch' -f "CPU & CPUS{$ISOLATED_CPUS}" \
 -e 'sched_wakeup' -f "target_cpu & CPUS{$ISOLATED_CPUS}" \
 -e 'ipi_send_cpu' -f "cpu & CPUS{$ISOLATED_CPUS}" \
 -e 'ipi_send_cpumask' -f "cpumask & CPUS{$ISOLATED_CPUS}" \
 hackbench

https://lore.kernel.org/lkml/xhsmh4jn8y8vt.mognet@vschneid.remote.csb/

IPI Deferral

4

Deferral vs early entry code

!! Danger zone !!

▸ Deferred operation is /!\ not immediately executed upon kernel entry /!\

Current approach Deferral

IPI Deferral

5

Instruction patching vs early entry code
▸ Danger zone => static key in early entry text

▸ Early kernel entry≈noinstr
▸ Leverage objtool, warn about static keys used in .noinstr regions

▸ Some non-issue ones, __ro_after_init

▸ Two problematic keys stand out:

･ mds_idle_clear; x86 mitigation, flipped at SMT hotplug

･ __sched_clock_stable; flipped by mark_tsc_unstable(), called by a lot of __init functions but also

runtime ones (e.g. loading KVM module)

▸ Can we just let the IPI through and blame the user?

IPI Deferral

6

TLB flush vs early entry code
▸ Danger zone => accessing vmap’d addresses in early entry code

▸ CONFIG_VMAP_STACK

･ No in-flight stack changes between fork() and exit()/put_task_struct()

･ Not a problem? (cue for one of you to disagree)

▸ Something to track vmap’d addresses in .noinstr regions?

IPI Deferral

7

[1]: https://lore.kernel.org/all/188AEA79-10E6-4DFF-86F4-FE624FD1880F@vmware.com/

TLB flush vs x86 being annoying
▸ Paging structure cache, Intel SDM volume 3, 4.10.3

･ CPU can cache “any part of the paging hierarchy”

･ Cached entries can be accessed speculatively

▸ Safe-ish to defer ▸ Risky to defer
▸ Pointed out by Nadav Amit &

Dave Hansen [1]

▸ vunmap() does not free

page-table-pages, which

negates the risk… For now

https://lore.kernel.org/all/188AEA79-10E6-4DFF-86F4-FE624FD1880F@vmware.com/

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

8

Thank you!

