
Proprietary + Confidential

Demystifying Proxy Execution
John Stultz <jstultz@google.com>

mailto:jstultz@google.com

Proprietary + Confidential

Thank yous!

Proxy Execution has been worked on by numerous folks,
who deserve a lot of credit

Watkins, Straub, Niehaus (RTLWS11)

Peter Zijlstra (RTSumit17)

Juri Lelli (2018 patchset, OSPM19)

Valentin Schneider (LPC20 slides)

Connor O'Brien (2022 patchset)

With additional help from and thanks to:

 Joel Fernandes, Dietmar Eggemann, Qais Yousef,

 Metin Kaya, K Prateek Nayak and others!

https://static.lwn.net/images/conf/rtlws11/papers/proc/p38.pdf
https://www.youtube.com/watch?v=9daCKeVmI5Y&list=PLbzoR-pLrL6r4xoc1PmRiYh2-qraTilVu
https://lore.kernel.org/lkml/20181009092434.26221-1-juri.lelli@redhat.com/
https://www.youtube.com/watch?v=mlu9pC5IL2g
https://lpc.events/event/7/contributions/758/attachments/585/1036/lpc20-proxy.pdf
https://lore.kernel.org/lkml/20221003214501.2050087-1-connoro@google.com/

Proprietary + Confidential

Background

Proprietary + Confidential

Proxy Execution: Why?

Android uses concept of FOREGROUND vs BACKGROUND apps
As devices memory grows, we can keep more apps running in the
background, so one can switch between apps faster.

Android tasks run mostly as SCHED_NORMAL (fair)
Which means each runnable task gets ~equal time on the cpu as
every other runnable task.

More running tasks => proportionately less time per task

But tasks aren’t equally important.
Performance of BACKGROUND tasks doesn’t matter as much as
FOREGROUND task being actively used.

Want to make sure BACKGROUND tasks don’t negatively affect
FOREGROUND tasks.

Task1

Task2

Task3

Proprietary + Confidential

Proxy Execution: Why?

Use cgroups to restrict background tasks:
Bound background tasks to “small” cpus with cpusets, and
use cpu.share cgroup to further restrict cputime of
background tasks

But this runs into trouble:
While this configuration often improves FOREGROUND
performance on average, we see really bad outliers.

Classic Priority Inversion
If background task manages to take a lock, it may be some
time before it can run long enough to release it! Won’t
deadlock, but may be longer then we like

.

Task1

Task2
Task3

Proprietary + Confidential

Proxy Execution: Why?

.

Proprietary + Confidential

Task RT99

Task RT50

Task RT0
Running, Takes Lock1

Busylooping!

Tries to take Lock1, sleeps

Busylooping!

1

Proprietary + Confidential

Task RT99

Task RT50

Task RT0
Running, Takes Lock1

Busylooping!

Tries to take Lock1, sleeps

Releases Lock1

Gets Lock1, Runs

Boosts Priority

1

1

Proprietary + Confidential

Generalized Priority Inheritance

SCHED_NORMAL doesn’t have strict linear priority order!
Priority inheritance won’t work as selection is based on dynamic
vruntime values and nests into cgroups, so there isn’t a singular value
to inherit.
So the idea is to use the scheduler selection function itself.

1) Leave the mutex blocked tasks on the runqueue
2) Use pick_next_task() to pick *whatever* is the

most best task to run at a given time
3) If its mutex blocked, find the owner, and run that!

Simplified code:
__schedule():

 ...

 next = pick_next_task(rq, prev, &rf);

 rq_set_donor(rq, next);

 if (unlikely(task_is_blocked(next)))

 next = find_proxy_task(rq, next, &rf);

 ...

 rq = context_switch(rq, prev, next, &rf);

CPU 1 Runqueue

Task1
(blocked)

Task2 Task3

pic
k_

ne
xt_

tas
k

1

(blocked_on)

(owner)
Exec

Proprietary + Confidential

Proxy Execution: Benefits

.

Vanilla:

Proxy-exec:

https://github.com/johnstultz-work/priority-inversion-demo

https://github.com/johnstultz-work/priority-inversion-demo

Proprietary + Confidential

Proxy Execution: Benefits

.

Proprietary + Confidential

Dual contexts

In a way, we have two “running” tasks

Task that is waiting for the mutex, that was chosen to run, that the proxy task runs
on behalf of.

● rq->donor

● If mutex blocked, can’t actually run
● Also called the “scheduler context”, “waiter” or “donor” task

Task that owns the mutex that is actually run
● rq->curr

● Also called “execution context”, or the “owner” or “proxy” task
● Runs on behalf of the donor, using the donor’s “scheduler context”

While we run the rq->curr, in most cases, we do accounting, etc using
rq->donor.

See related patch in series

https://github.com/johnstultz-work/linux-dev/commit/c36d47ebc6d8a154e00c78e2d4a176dfe8784b58

Proprietary + Confidential

Task/Mutex Chains

In order to figure out what task to run, we have to look at the
mutex we’re blocked on and find it’s owner.

● Add task->blocked_on ptr to point to mutex
● mutex->owner points to owning task.

Problem: This alternating type makes locking complex
● task->blocked_on_lock serializes task related

state
● mutex->wait_lock serializes mutex related state
● Lockdep won’t let us take blocked_on_lock -> wait_lock,

and wait_lock -> blocked_on_lock
● Have to let go of the locks when traversing

task->blocked_on pointer!
Holding the rq->lock to keep tasks from disappearing
Also, when we hold the mutex->wait_lock, we know the
mutex->owner task can’t disappear on us.
This lets us safely look at one task off the current runqueue in the
chain.

Lock ordering:
1) task->pi_lock

2) rq->lock

3) mutex->wait_lock

4) task->blocked_on_lock

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/103777ff3ab1a57eba14dacaddfe43d37549b380

Proprietary + Confidential

Simple Proxying
(Same CPU)

Proprietary + Confidential

Keeping mutex blocked tasks on the runqueue

static void __sched notrace __schedule(unsigned int sched_mode)

 ...

 prev = rq->curr;

 ...

 rq_lock(rq, &rf);

 ...

 prev_state = READ_ONCE(prev->__state);

 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {

 try_to_deactivate_task(rq, prev, prev_state,

 !task_is_blocked(prev));

 switch_count = &prev->nvcsw;

 }

 ...

Annotations:
Save current running task as prev

Note for most of __schedule, we are holding
the rq->lock

If prev is not runnable, call
try_to_deactivate_task(), which
will only deactivate if prev is mutex blocked
(!task_is_blocked(prev)).

This is what keeps the mutex-blocked tasks on
the runqueue.

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/ef67e335ca8b8318b57d39ff36bf54a7e4d62988#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6486

Proprietary + Confidential

Further down in __schedule() logic

static void __sched notrace __schedule(unsigned int sched_mode)

 ...

pick_again:

 next = pick_next_task(rq, rq->donor, &rf);

 rq_set_donor(rq, next);

 next->blocked_donor = NULL;

 if (unlikely(task_is_blocked(next))) {

 next = find_proxy_task(rq, next, &rf);

 if (!next) {

 zap_balance_callbacks(rq);

 goto pick_again;

 }

 if (next == rq->idle)

 preserve_need_resched = true;

 }

 if (!preserve_need_resched)

 clear_tsk_need_resched(prev);

 ...

Annotations:
Pick the next task as usual
Save the chosen task as the rq->donor

If chosen task is blocked, walk the mutex/task chain
to find a runnable owner.

If find_proxy_task() returned null, we have
to start over. zap_balance_callbacks() to
undo callback state set by pick_next_task()
and goto pick_again

If find_proxy_task() returned the idle task, it
means we want to take action on current, so we
have to switch to idle quickly first.

If we are switching quickly to idle, preserve the
need_resched bit, so we will enter into
__schedule again right after we switch to idle.

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/4c94ca6e33133a387141358f67f65059d633f7ce#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6647

Proprietary + Confidential

find_proxy_task(): walking the chain

static struct task_struct *

find_proxy_task(struct rq *rq, struct task_struct *next,...)

 ...

 for (p = next; task_is_blocked(p); p = owner) {

 mutex = p->blocked_on;

 if (!mutex) return NULL;

 raw_spin_lock(&mutex->wait_lock);

 raw_spin_lock(&p->blocked_lock);

 if (mutex != get_task_blocked_on(p))

 goto out;

 if (task_current(rq, p))

 curr_in_chain = true;

 owner = __mutex_owner(mutex);

 < complex logic here >

 raw_spin_unlock(&p->blocked_lock);

 raw_spin_unlock(&mutex->wait_lock);

 owner->blocked_donor = p;

 }

 return owner;

Annotations:
Note: we currently hold the rq->lock when calling
(for the sake of this slide, assume all the tasks we
visit are on this rq)

Starting with next, iterate p through the task/mutex
chain while it is mutex blocked.

Grab mutex->wait_lock and p->blocked_lock

Re-validate unlocked mutex = p->blocked_on access
is still valid after we have taken the locks

If p is current, set curr_in_chain flag (used later)

Get the mutex owner

Let go of the locks, and set reverse trail via
blocked_donor

Loop, moving p to point to the owner

When we have hit an unblocked owner, return it!
Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/245ae93cdba807afba02fd35e64f69036fb41bb5#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6527

Proprietary + Confidential

Proxying Across Runqueues
(Proxy Migration)

Proprietary + Confidential

CPU 2 Runqueue

CPU 1 Runqueue

Proxying across cpu runqueues

The lock owner may not be on the same cpu as the blocked
waiter
If the owner is on another cpu, there are two options

1) Migrate the owner to the waiters’ cpu and run it there
2) Migrate the waiter to the owner’s cpu, and boost it there

Unfortunately, #1 won’t always work, as owner’s cpu affinity might
not allow it to run on the waiters’s cpu

Task1
(blocked)

Task2 Task3

(blocked_on)

Task4 Task5
1

(owner)

Nex
t

Nex
t

Proprietary + Confidential

Proxying across cpu runqueues

The lock owner may not be on the same cpu as the blocked
waiter
If the owner is on another cpu, there are two options

1) Migrate the owner to the waiters’ cpu and run it there
2) Migrate the waiter to the owner’s cpu, and boost it there

Unfortunately, #1 won’t always work, as owner’s cpu affinity might
not allow it to run on the waiters’s cpu

So we migrate waiter to remote runqueue, and let it be selected
as the rq->donor to boost the lock owner.
The donor doesn’t actually run, so this is ok.

CPU 1 Runqueue

(blocked_on)

CPU 2 Runqueue

Task5
1

(owner)

Task1
(blocked)

Nex
t

Task2

Nex
t

Task4

Exec

Task3

Proprietary + Confidential

Proxying across cpu runqueues

The lock owner may not be on the same cpu as the blocked
waiter
If the owner is on another cpu, there are two options

1) Migrate the owner to the waiters’ cpu and run it there
2) Migrate the waiter to the owner’s cpu, and boost it there

Unfortunately, #1 won’t always work, as owner’s cpu affinity might
not allow it to run on the waiters’s cpu

So we migrate waiter to remote runqueue, and let it be selected
as the rq->donor to boost the lock owner.
The donor doesn’t actually run, so this is ok.

Have to be careful! If lock owner releases the lock, we can’t just let
the donor run on the remote cpu! Its affinity may not allow it.

Need to make sure it’s affinity allows it, and do return-migration
back to a cpu it can run on (more on this later)

CPU 1 Runqueue

(blocked_on)

CPU 2 Runqueue

Task5
1

Task1

Nex
t

Task2

Nex
t

Task4

Exec

Task3

Proprietary + Confidential

find_proxy_task(): owner on remote rq?

for (p = next; task_is_blocked(p); p = owner) {

 ...

 owner_cpu = task_cpu(owner);

 if (owner_cpu != cur_cpu) {

 raw_spin_unlock(&p->blocked_lock);

 raw_spin_unlock(&mutex->wait_lock);

 if (curr_in_chain)

 return proxy_resched_idle(rq, next);

 proxy_migrate_task(rq, rf, p, owner_cpu);

 return NULL;

 }

Annotations:
Continuing find_proxy_task loop, walking
through the chain

If we find the owner’s cpu isn’t the current cpu,
we can’t go any further!

Let go of the locks

If current is in the chain, we can’t migrate it,
since its running right now! So return idle, to
quickly switch and we will try again.

Migrate p to the owner_cpu, and return NULL
(forcing pick_again)

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6750

Proprietary + Confidential

proxy_migrate_task(): part 1

static void proxy_migrate_task(struct rq *rq, struct rq_flags *rf,

 struct task_struct *p, int target_cpu)

 ...

 put_prev_task(rq, rq->donor);

 rq_set_donor(rq, rq->curr);

 set_next_task(rq, rq->curr);

 for (; p; p = p->blocked_donor) {

 deactivate_task(rq, p, 0);

 proxy_set_task_cpu(p, target_cpu);

 list_add(&p->migration_node, &migrate_list);

 }

 zap_balance_callbacks(rq);

 rq_unpin_lock(rq, rf);

 raw_spin_rq_unlock(rq);

 ...

Annotations:
We can’t hold the rq lock if we want to push a
task to another rq. So we have a bunch of things
to undo to make it safe to drop the rq lock
before we do the migration and start over.

Earlier we called put_prev_task() on prev.
But if we are going to release the rq lock we
have to undo all that. So put_prev_task on donor,
set rq->curr (same as prev at this point) as donor
and call set_next_task() on it as well.

Walk backward up the chain, using
blocked_donor ptr, deactivating each task from
this rq and setting the task_cpu to target_cpu
and add each task to the migration_list

Zap callbacks setup by pick_next_task, then
unpin and unlock the rq lock.

Related patch in series
Another related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6627
https://github.com/johnstultz-work/linux-dev/commit/e7a15c3d70cefcbfd68a0916963fa6fc91caad6a#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6802

Proprietary + Confidential

proxy_migrate_task(): part 2

static void proxy_migrate_task(struct rq *rq, struct rq_flags *rf,

 struct task_struct *p, int target_cpu)

 ...

 raw_spin_rq_lock(target_rq);

 while (!list_empty(&migrate_list)) {

 p = list_first_entry(&migrate_list,

 struct task_struct,

 migration_node);

 list_del_init(&p->migration_node);

 activate_task(target_rq, p, 0);

 check_preempt_curr(target_rq, p, 0);

 }

 raw_spin_rq_unlock(target_rq);

 raw_spin_rq_lock(rq);

 rq_repin_lock(rq, rf);

 proxy_resched_idle(rq, rq->curr);

}

Annotations:
Since we’ve let go of the rq lock, grab the
target_rq lock

Iterate through the migrate_list, activating each
task on the target_rq, and seeing if it should
preempt the target_rq->curr

Now the migration is done, let go of target_rq,
and re-grab the rq lock

Resched the idle task, and return so we can pick
again.

Related patch in series
Another related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6627
https://github.com/johnstultz-work/linux-dev/commit/e7a15c3d70cefcbfd68a0916963fa6fc91caad6a#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6802

Proprietary + Confidential

Proxy Return-Migration

Proprietary + Confidential

Ensuring proper return migration

To ensure we return-migrate tasks, we need more state
We include a blocked_on_state in the task struct. This tri-state
ensures that when a mutex has been released and the task’s
blocked_on pointer is cleared, we still need to evaluate if the task
needs to be return migrated before it can be run.

Thought: It feels like we might be able to merge this state into the
task_state (TASK_RUNNING, TASK_INTERRUPTABLE, etc), but I’ve not
quite worked out how.

enum blocked_on_state {

 BO_RUNNABLE,

 BO_BLOCKED,

 BO_WAKING,

};

static inline

bool task_is_blocked(struct task_struct *p)

{

 return !!p->blocked_on &&

 p->blocked_on_state != BO_RUNNABLE;

}

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/103777ff3ab1a57eba14dacaddfe43d37549b380#diff-f8d8a1568ae83bbff6f40f9c70559a4f7dbf426a397131ba9d4fbfb947ea5222R757

Proprietary + Confidential

try_to_wakeup() details:

 ...

 if (!ttwu_state_match(p, state, &success)) {

 /*

 * If we're already TASK_RUNNING, and BO_WAKING

 * continue on to ttwu_runnable check to force

 * proxy_needs_return evaluation

 */

 if (!(READ_ONCE(p->__state) == TASK_RUNNING &&

 READ_ONCE(p->blocked_on_state) == BO_WAKING))

 break;

 }

 ...

 smp_rmb();

 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))

 break;

 ...

Annotations:

Normally if the ttwu_state_match failed, the task
was already runnable, no reason to wake it.

But special case when we’re TASK_RUNNING, but
BO_WAKING (ie: possibly in need of return
migration), and don’t break early.

Instead carry on with the wakeup process.

Mutex blocked tasks are kept on the rq, so we
will continue on to checking ttwu_runnable.

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR4158

Proprietary + Confidential

ttwu_runnable() details:

 ret = 0;

 ...

 rq = __task_rq_lock(p, &rf);

 if (task_on_rq_queued(p)) {

 if (!task_on_cpu(rq, p)) {

 ...

 }

 if (proxy_needs_return(rq, p))

 goto out;

 ttwu_do_wakeup(p);

 ret = 1;

 }

out:

 __task_rq_unlock(rq, &rf);

 return ret;

Annotations:

Grab’s the task->pi_lock and the rq->lock
(convenient as we need these in
proxy_needs_return!)

Mostly this function is left unchanged

One special case, where if proxy_needs_return()
returns true, we skip the ttwu_do_wakeup, and
return zero.

This is because proxy_needs_return will
deactivate the mutex blocked task that was on
the rq! So afterwards it’s back to not being
runnable!

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR3755

Proprietary + Confidential

proxy_needs_return():

static inline

bool proxy_needs_return(struct rq *rq, struct task_struct *p)

 bool ret = false;

 raw_spin_lock(&p->blocked_lock);

 if (get_task_blocked_on(p) &&

 p->blocked_on_state == BO_WAKING) {

 if (!task_current(rq, p) &&

 (p->wake_cpu != cpu_of(rq))) {

 if (task_current_donor(rq, p)) {

 put_prev_task(rq, p);

 rq_set_donor(rq, rq->idle);

 }

 deactivate_task(rq, p, DEQUEUE_NOCLOCK);

 ret = true;

 }

 p->blocked_on_state = BO_RUNNABLE;

 resched_curr(rq);

 }

 raw_spin_unlock(&p->blocked_lock);

 return ret;

Annotations:
Called in ttwu_runnable(), which took
__task_rq_lock() so we hold needed
locks.

We only need to do something if the task is
BO_WAKING, and assuming it isn’t current (so
already running), and the wake_cpu isn’t this
cpu.

If p is the current donor, put_prev_task and set
the donor to idle

Remember, blocked tasks kept on the rq, so
deactivate p on this rq, so we will later activate it
in try_to_wake_up() up the call stack on its
wake_cpu.

Set the task BO_RUNNABLE, and resched cur.

Return true only if we deactivated the task
Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR3631

Proprietary + Confidential

try_to_wakeup() details: (continued)
 ...

 WRITE_ONCE(p->__state, TASK_WAKING);

 set_blocked_on_runnable(p);

 ...

 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);

 if (task_cpu(p) != cpu) {

 ...

 wake_flags |= WF_MIGRATED;

 psi_ttwu_dequeue(p);

 set_task_cpu(p, cpu);

 }

 ...

Annotations:

After we’ve checked ttwu_runnable(), which
through proxy_needs_return() deactivated the
task we’re waking, we set the task as
BO_RUNNABLE

Go through the normal wakeup runqueue
selection (unchanged) which will utilize the
saved wake_cpu to return migrate the now
mutex unblocked task to a cpu its allowed to run
on.

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/cc828a6bac87dcd5734902021973659fe52ef7e6#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR4266

Proprietary + Confidential

Sleeping Owner Enqueuing
(And Blocked Entities Activation)

Proprietary + Confidential

CPU 1 Runqueue

Nex
t

Task1
(blocked) Task2

Task3
(sleeping)

1

(blocked_on)

(owner)
ZZZ

Blocked on a sleeping mutex owner

The lock owner may have ended up sleeping or blocked on IO

Nothing we can do to make it run!

Proprietary + Confidential

CPU 1 Runqueue

Nex
t

Task1
(blocked)

Task2

Task3
(sleeping)

1

(blocked_on)

(owner)
ZZZ

(blocked_entities)

Blocked on a sleeping mutex owner

The lock owner may have ended up sleeping or blocked on IO

Nothing we can do to make it run!

So we deactivate it from the runqueue (so something else can run)

And enqueue it on the sleeping owner

When the sleeping task is woken up, activate all it’s
blocked_entities

Proprietary + Confidential

find_proxy_task(): owner is sleeping

for (p = next; task_is_blocked(p); p = owner) {

 ...

 if (!owner->on_rq) {

 if (curr_in_chain) {

 raw_spin_unlock(&p->blocked_lock);

 raw_spin_unlock(&mutex->wait_lock);

 return proxy_resched_idle(rq, next);

 }

 if (owner != p) {

 raw_spin_unlock(&p->blocked_lock);

 raw_spin_lock(&owner->blocked_lock);

 }

 proxy_resched_idle(rq, next);

 proxy_enqueue_on_owner(rq, owner, next);

 raw_spin_unlock(&owner->blocked_lock);

 raw_spin_unlock(&mutex->wait_lock);

 return NULL; /* retry task selection */

 }

Annotations:
Continuing find_proxy_task loop, walking
through the chain

If the owner isn’t on a runqueue, check current
isn’t in the chain, and if it is resched idle and
return (we’ll get back here again after we
switch)

Switch to holding the owner’s blocked_lock.

Resched idle (since we’re not going to run next),
and enqueue the chosen task onto the owner.

Drop the locks and return null, so we pick_again.

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/c8c867a8f968108e0b886870cfb8353ab4aef563#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR7014

Proprietary + Confidential

proxy_enqueue_on_owner(): Adding waiter to sleeping task

static void

proxy_enqueue_on_owner(struct rq *rq, struct task_struct *owner,

 struct task_struct *next)

{

 if (!owner->on_rq) {

 deactivate_task(rq, next, DEQUEUE_SLEEP);

 get_task_struct(owner);

 next->sleeping_owner = owner;

 list_add(&next->blocked_node, &owner->blocked_head);

 }

}

Annotations:

Assuming the owner is still not on_rq,
deactivate the waiting task next

Take a reference to the owner struct

Keep track of who the waiter is enqueued on

Add waiter to the owner’s blocked_head

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/c8c867a8f968108e0b886870cfb8353ab4aef563#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR6843

Proprietary + Confidential

activate_blocked_waiters(): The nightmare!

Unfortunately, activate_blocked_waiters() is too complicated to
cover on a slide.

Iterating through the list of tasks on the waking task’s blocked_head
and activating them is relatively simple enough. Though we have to
take the task->pi_lock and rq->lock and release them for each task
activated.

But we also have to activate all the tasks that are blocked on those
tasks. It can be a tree structure.

Lots of dropping and taking of locks, with lots of races possible,
including sub-tree wakeups!

Related patch in series

https://github.com/johnstultz-work/linux-dev/commit/c8c867a8f968108e0b886870cfb8353ab4aef563#diff-cc1a82129952a910fdc4292448c2a097a2ba538bebefcf3c06381e45639ae73eR3695

Proprietary + Confidential

Thank you!
John Stultz <jstultz@google.com>

Full patch set referenced in these slides:
https://github.com/johnstultz-work/linux-dev/commits/proxy-exec-v12-6.11-rc5/

mailto:jstultz@google.com
https://github.com/johnstultz-work/linux-dev/commits/proxy-exec-v12-6.11-rc5/

Proprietary + Confidential

