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There’s a black hole in the
scheduler

Better management of system response time
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DVFS and HMP slow down time

e The lower the frequency/capacity, the longer it takes to finish the same amount of work
e Utilization invariance introduces Black Hole effect of Time Dilation
o 1ms for a task is actually 25-30ms in real time (from observer’s/userspace PoV)
e Always busy task starting from util_avg/util_est = O appears as stuck on little core for 90ms, 37ms of
which running at lowest frequency
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ldeal response time is running at perf level = 1024

e User space expects tasks utilization to uniformly rampup as if they are running with a performance
governor all the time

e Under this circumstances where util invariance is effectively a NOP, the utilization value grows every tick
(1ms in this example)
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Impacts on scheduler decisions

e Schedutil governor will appear unresponsive on many systems
o Long TICK and rate_limit_us compound this this problem

e On HMP systems tasks appear being ‘stuck’ on underperforming cores after prolonged
period of activity

e System will appear less loaded for prolonged period of time, leading to ineffective load
balancing and more wrong decisions at wakeup path

e Migration margins and DVFS headroom are currently hardcoded based on old system
properties that | think were suitable to hide this effect then, but they need to change now as
they cause either bad perf or bad power on different type of systems/workloads



Impact on fairness

e Do we manage vruntime adequately to reflect this time dilation impact?

o If atask is running for 1ms on little core moves to a big core that has a task already
running for Ims, who is more viable for CPU time so that they both had access to the

same computational demand?
o Do we need debt_vruntime concept?
e If we define waiting_avg as the time in RUNNABLE && 'RUNNING

o If atask had a waiting_avg of 6ms on little core and moves to a bigger core that already
has 2 tasks running, who has preference to preempt next so that their waiting_avg is

equivalent?
e Anexample of such fairness problem is always running tasks on N cores HMP systems or a

system with multiple independent cpufreq policies. Many implement task rotation mechanism
as this is more fair. Addressing the above would be a better way to fix the problem.



What can we do about it?

Extend util_est to behave like ideal response when tasks are transient

o Perfectly periodic tasks have no problem by definition and current util_est behavior is
sufficient

o  Periodic tasks are tasks that have their util_avg the same across activations
o Transient tasks are ones that have their util_avg rising across activations

Remove hardcoded migration margin and DVFS headroom with more automatic one based on
worst case scenario

rampup_multiplier to give userspace the choice to go faster or O to indicate slow rampup is
okay which can help to save power

Introduce waiting_avg to improve DVFS headroom and to potentially better handle latencies
in load_balance/wakeup path

No idea about vruntime (if it is indeed a problem)



Questions



