Google

There’s a black hole in the
scheduler

Better management of system response time

zzzzzzz

DVFS and HMP slow down time

e The lower the frequency/capacity, the longer it takes to finish the same amount of work
e Utilization invariance introduces Black Hole effect of Time Dilation
o 1ms for a task is actually 25-30ms in real time (from observer’s/userspace PoV)
e Always busy task starting from util_avg/util_est = O appears as stuck on little core for 90ms, 37ms of
which running at lowest frequency

Sum Time Running on CPU (ms)

CPUQ.0 NN 90.39
CPU4.¢ INNNENENENENENEN AN AN A AN A AN AR NN AR ENENENA 115693

6338 rampup CPU@.@ Frequency residency (ms) ————————— PP—— 6338 util_avg running “mmy "“5’
¢ NNNNNNNNNNNNNNNNNNNNNNNANNRNNNARRRNNNRNRRNNANN
0.6 I 37 - 300000000000004 e
0.972 I 150 e ———__tt i isiiiie N GO B
W T T
1.332 I 15 0 72> NNNNNNNNNNNRRRNNNNNNNNRRRRNNNN AN RRRRNNNN AR RRRRRRANNAARRRRRN - ©
- NNNNNNNNNNANNRNNNNNRNN AN NRNN AN RRNN NN
1.704 I 1.0 By — 11—
2.004 NN 121 1270 NNNNANNNNNNNNNNNNNANNRRRRNNNNNAAARRRRRRRRNAN © ¢
1550 NNNNNNNNNNNANNRNNNNRRNNNNRRRNNAN -
1750 NNNNNNNNNNNNNRRNNNRNARN
1510 NNNNNNNNNNNNANNRNNNANRRNNNANNRRNNNN
2110 NNNNNNNNNNNANNRNNNNRRNNNNRRRNNAN © 0
2520 ENNNNNNNNNNNNNNRNNNNRNARN ©
6338 rampup CPU4.@ Frequency residency (ms) %223_ 2.0 e
1.5 S 110 2770 ENNNNNNNNNNNNRRNNANNN - ©
: 2520 NNNNNNNNNNNANRRNNNANRE © 5
1.956 NN 10.0 3o ENNNNNNNNNNNNNNNRRNE .
2.184 N 10.0 ;i;-g ANNNNNNNNRNRNRRENN 0 .
- NNNNANNNNNANRRNNNNNRRNNAN :
2.388 N 1.0 358 0 ENNNNNNNNNNNNNNNN - o
2.592 I 10.0 ey ETEEE
"o ENNNNNNRNNNNRNNNNN
2.772 I 10.0 389 0 ENNNNNNNNNNNNNNRN > o
"o ENNNNNRRNNNANENNN >
2.988 I 10.0 PR
3.2¢4 NNNNNENNNNNNENEENNNRNERNNEN NN NN NN NN &5 3 431 0 EESEEENNRNNNNNNN 2.0
442.0 IEIEERERENREREEENE 2 .©
456.0 [NEENENEN 1.0

ldeal response time is running at perf level = 1024

e User space expects tasks utilization to uniformly rampup as if they are running with a performance
governor all the time

e Under this circumstances where util invariance is effectively a NOP, the utilization value grows every tick
(1ms in this example)

rampup-6581 util_avg running rampup-5088 util_avg running
984 1015.@
738 761.2
4924 507.5
246 253.8
[1 0.0 1
14;00 14;33 14;67 1.é00 1.é33 1.é67 1.‘900 1}‘333 1}‘367 2400é 1.‘700 1.‘733 1.‘767 1.é00 1.é33 14é67 1}‘300 1}‘333 1}‘367 2400é
Default response time, 284ms from @ to ~1000 Ideal response time, 167ms from @ to ~1000

Impacts on scheduler decisions

e Schedutil governor will appear unresponsive on many systems
o Long TICK and rate_limit_us compound this this problem

e On HMP systems tasks appear being ‘stuck’ on underperforming cores after prolonged
period of activity

e System will appear less loaded for prolonged period of time, leading to ineffective load
balancing and more wrong decisions at wakeup path

e Migration margins and DVFS headroom are currently hardcoded based on old system
properties that | think were suitable to hide this effect then, but they need to change now as
they cause either bad perf or bad power on different type of systems/workloads

Impact on fairness

e Do we manage vruntime adequately to reflect this time dilation impact?

o If atask is running for 1ms on little core moves to a big core that has a task already
running for Ims, who is more viable for CPU time so that they both had access to the

same computational demand?
o Do we need debt_vruntime concept?
e If we define waiting_avg as the time in RUNNABLE && 'RUNNING

o If atask had a waiting_avg of 6ms on little core and moves to a bigger core that already
has 2 tasks running, who has preference to preempt next so that their waiting_avg is

equivalent?
e Anexample of such fairness problem is always running tasks on N cores HMP systems or a

system with multiple independent cpufreq policies. Many implement task rotation mechanism
as this is more fair. Addressing the above would be a better way to fix the problem.

What can we do about it?

Extend util_est to behave like ideal response when tasks are transient

o Perfectly periodic tasks have no problem by definition and current util_est behavior is
sufficient

o Periodic tasks are tasks that have their util_avg the same across activations
o Transient tasks are ones that have their util_avg rising across activations

Remove hardcoded migration margin and DVFS headroom with more automatic one based on
worst case scenario

rampup_multiplier to give userspace the choice to go faster or O to indicate slow rampup is
okay which can help to save power

Introduce waiting_avg to improve DVFS headroom and to potentially better handle latencies
in load_balance/wakeup path

No idea about vruntime (if it is indeed a problem)

Questions

