
Qais Yousef Sep 2024

There’s a black hole in the
scheduler
Better management of system response time

● The lower the frequency/capacity, the longer it takes to finish the same amount of work
● Utilization invariance introduces Black Hole effect of Time Dilation

○ 1ms for a task is actually 25-30ms in real time (from observer’s/userspace PoV)
● Always busy task starting from util_avg/util_est = 0 appears as stuck on little core for 90ms, 37ms of

which running at lowest frequency

DVFS and HMP slow down time

───────────────── 6338 rampup CPU0.0 Frequency residency (ms) ────────────────── 
0.6 ▇▇▇ 37.300000000000004 
0.972 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 15.0 
1.332 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 15.0 
1.704 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 11.0 
2.064 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 12.1 

───────────────── rampup-6338 util_avg running residency (ms) ────────────────── 
0.0 ▇▇ 5.5 
15.0 ▇▇▇ 7.9 
36.0 ▇▇ 8.0 
57.0 ▇▇ 8.0 
78.0 ▇▇▇ 7.9 
98.0 ▇▇ 5.0 
117.0 ▇▇ 5.0 
137.0 ▇▇ 5.0 
156.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 4.0 
176.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 3.0 
191.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 4.0 
211.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 4.0 
230.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 3.0 
248.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 3.0 
266.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
277.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 3.0 
294.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.6 
311.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.4 
327.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
340.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 3.0 
358.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
371.0 ▇▇▇▇▇▇▇▇▇ 1.0 
377.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
389.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
401.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
413.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 3.0 
431.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
442.0 ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2.0 
456.0 ▇▇▇▇▇▇▇▇▇ 1.0 
 

───────────────────────── Sum Time Running on CPU (ms) ───────────────────────── 
CPU0.0 ▇▇▇▇▇ 90.39 
CPU4.0 ▇▇▇ 1156.93 
 
 
 

───────────────── 6338 rampup CPU4.0 Frequency residency (ms) ────────────────── 
1.5 ▇▇▇▇▇▇▇▇▇▇ 11.9 
1.956 ▇▇▇▇▇▇▇▇ 10.0 
2.184 ▇▇▇▇▇▇▇▇ 10.0 
2.388 ▇▇▇▇▇▇▇▇▇ 11.0 
2.592 ▇▇▇▇▇▇▇▇ 10.0 
2.772 ▇▇▇▇▇▇▇▇ 10.0 
2.988 ▇▇▇▇▇▇▇▇ 10.0 
3.204 ▇▇▇ 85.3 
 

● User space expects tasks utilization to uniformly rampup as if they are running with a performance
governor all the time

● Under this circumstances where util invariance is effectively a NOP, the utilization value grows every tick
(1ms in this example)

Ideal response time is running at perf level = 1024

 rampup-6581 util_avg running 
 ┌───┐ 
984┤ ▄▄▄▄▄▟▀▀▀▀│ 
 │ ▗▄▄▛▀▀▀▘ │ 
 │ ▗▄▞▀▀ │ 
 │ ▄▄▛▀ │ 
738┤ ▗▟▀▘ │ 
 │ ▄▛▀ │ 
 │ ▗▟▀▘ │ 
492┤ ▄▟▀ │ 
 │ ▄▛▘ │ 
 │ ▗▄▛▘ │ 
 │ ▄▟▀ │ 
246┤ ▄▟▀▘ │ 
 │ ▗▄▟▘ │ 
 │ ▗▟▀▀ │ 
 │ ▄▄▄▄▛▀▀ │ 
 0┤ ▗ ▗▄▄▛▀▘ │ 
 └┬───────┬───────┬────────┬───────┬───────┬───────┬────────┬───────┬───────┬┘ 
 1.700 1.733 1.767 1.800 1.833 1.867 1.900 1.933 1.967 2.000 
 

Default response time, 284ms from 0 to ~1000 
 

 rampup-5088 util_avg running 
 ┌──┐ 
1015.0┤ ▄▄▄▄▄▄▄▄▄▟▀▀▀▀▀▀▀▀▀▀▀▀│ 
 │ ▗▄▄▄▛▀▀▀▀▘ │ 
 │ ▗▄▟▀▀▀ │ 
 │ ▄▟▀▀ │ 
 761.2┤ ▄▟▀▘ │ 
 │ ▗▛▘ │ 
 │ ▗▟▀ │ 
 507.5┤ ▗▟▀ │ 
 │ ▗▛ │ 
 │ ▄▛ │ 
 │ ▟▘ │ 
 253.8┤ ▐▘ │ 
 │ ▟▀ │ 
 │ ▗▘ │ 
 │ ▗▛ │ 
 0.0┤ ▗ ▛ │ 
 └┬───────┬───────┬───────┬───────┬──────┬───────┬───────┬───────┬───────┬┘ 
 1.700 1.733 1.767 1.800 1.833 1.867 1.900 1.933 1.967 2.000 
 

Ideal response time, 167ms from 0 to ~1000 
 

● Schedutil governor will appear unresponsive on many systems

○ Long TICK and rate_limit_us compound this this problem

● On HMP systems tasks appear being ‘stuck’ on underperforming cores after prolonged
period of activity

● System will appear less loaded for prolonged period of time, leading to ineffective load
balancing and more wrong decisions at wakeup path

● Migration margins and DVFS headroom are currently hardcoded based on old system
properties that I think were suitable to hide this effect then, but they need to change now as
they cause either bad perf or bad power on different type of systems/workloads

Impacts on scheduler decisions

● Do we manage vruntime adequately to reflect this time dilation impact?

○ If a task is running for 1ms on little core moves to a big core that has a task already
running for 1ms, who is more viable for CPU time so that they both had access to the
same computational demand?

○ Do we need debt_vruntime concept?

● If we define waiting_avg as the time in RUNNABLE && !RUNNING

○ If a task had a waiting_avg of 6ms on little core and moves to a bigger core that already
has 2 tasks running, who has preference to preempt next so that their waiting_avg is
equivalent?

● An example of such fairness problem is always running tasks on N cores HMP systems or a
system with multiple independent cpufreq policies. Many implement task rotation mechanism
as this is more fair. Addressing the above would be a better way to fix the problem.

Impact on fairness

● Extend util_est to behave like ideal response when tasks are transient

○ Perfectly periodic tasks have no problem by definition and current util_est behavior is
sufficient

○ Periodic tasks are tasks that have their util_avg the same across activations

○ Transient tasks are ones that have their util_avg rising across activations

● Remove hardcoded migration margin and DVFS headroom with more automatic one based on
worst case scenario

● rampup_multiplier to give userspace the choice to go faster or 0 to indicate slow rampup is
okay which can help to save power

● Introduce waiting_avg to improve DVFS headroom and to potentially better handle latencies
in load_balance/wakeup path

● No idea about vruntime (if it is indeed a problem)

What can we do about it?

Questions

