


Challenges in scheduling virtual CPUs
Tobias Huschle <huschle@linux.ibm.com>

IBM



Agenda

•Warm-up: Basics of virtual CPU scheduling

•Complexities

1.Host overhead

2.Virtualized infrastructure

3.Overcommitment

•The s390 approach



Warm up
Basics of virtual CPU scheduling

physical

virtual

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

vCPU 1 vCPU 2

KVM

each vCPU == one host process



Warm up
Basics of virtual CPU scheduling

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

KVM

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

physical



Complexity 1: Host overhead

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

KVM

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

physical

logsmemory



Complexity 1: Host overhead
Utilization of physical CPUs

CPU 

vCPU

logs

memory

vCPU cannot use 100% of physical CPU

Host has do decide when to schedule vCPU away



Complexity 2: Virtualized infrastructure



Complexity 2: Virtualized infrastructure

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

KVM

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

physical

logsmemory



Complexity 2: Virtualized infrastructure

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

KVM

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

physical

logsmemory

virtual networkvirtual diskphysical interface



Complexity 2: Virtualized infrastructure 
Utilization of physical CPUs

Infrastructure needs to be mapped to physical CPU

Increased contention for physical CPUs

CPU 

vCPU

logs

memory

infrastructure



Complexity 2: Virtualized infrastructure 
Example: vhost

virtual network

virtual

vCPU 1 vCPU 2

virtual

vCPU 1 vCPU 2

KVM

App1 App2

socket kworker

vhost1 vhost2
ioeventfd irqfd

eventfd

virtqueue



Complexity 2: Virtualized infrastructure 
Scheduling impact

vCPU 1

vhost1

kworker

vhost2

vCPU 2

normal runtime

vCPU 1

vhost1

kworker

vhost2

vCPU 2

outlier runtime

vCPU 1 vhost1 kworker

vCPU 1 vhost1 kworker

CFS

EEVDF



Complexity 2: Virtualized infrastructure 
Ordering: possible solutions

A B A A C D A BOrder processes

A B A A C D A BTransaction

A B A A C D A BYield specifically

kworker

prioritize tolerate one-off outliers



Complexity 3: Overcommitment



Complexity 3: Overcommitment

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

KVM

virtualvirtualvirtualvirtual

physical

logsmemory

virtual networkvirtual diskphysical interface

vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2



Complexity 3: Overcommitment

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

KVM

virtual

vCPU 3 vCPU 4

virtual

vCPU 3 vCPU 4

virtual

vCPU 3 vCPU 4

virtual

vCPU 3 vCPU 4

physical

logsmemory

virtual networkvirtual diskphysical interface

vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2



Complexity 3: Overcommitment
Utilization of physical CPUs

competition with other vCPUs

which vCPUs go well together?

→ vCPU experiences steal time

CPU 

vCPU 3

logs

memory

infrastructure

vCPU 1

vCPU 2



Complexity 3: Overcommitment
Issue: Interruption by other vcpus

A A A A A A A A1 vCPU

A A B B A A B B2 vCPUs

A B C D A B C D4 vCPUs

Point in time Duration



The s390 approach



The s390 approach
Horizontal polarization: Distribute equally

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

PR/SM

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

s390 hardware

vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2



The s390 approach
Horizontal polarization: Distribute equally

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

PR/SM

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

s390 hardware

vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2

2 1 3 2



The s390 approach
Horizontal polarization: Distribute equally

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

PR/SM

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

s390 hardware

vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2

2 1 3 2

Cache topologyTiming



The s390 approach
Vertical polarization: Prioritize entitled CPUs

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

PR/SM

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

LPAR

vCPU 3 vCPU 4

s390 hardware

vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2vCPU 1 vCPU 2

2 1 3 2

vCPU 1 vCPU 2vCPU 2 vCPU 3vCPU 1 vCPU 1vCPU 1 vCPU 2

vCPU 3 vCPU 4vCPU 4vCPU 3 vCPU 4vCPU 3 vCPU 4 vCPU 2

vertical high

vertical low



The s390 approach
Vertical polarization: Advantages

Clearer scheduling of vCPUs
• Avoid steal time
• Better topology guarantees, yielding better cache locality

Collaboration between PR/SM and LPARs
• Gather CPU utilization of other LPARs
• Observe local steal time

Better control for the guest systems



The s390 approach
Integration into the Linux kernel

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

Option A: CPU capacity approach

less invasive, changes to arch/ only not as strict, vertical lows may still run tasks

Assign CPU capacities based on the polarization of the CPU
- vertical high → maximum capacity
- vertical low → small capacity (or maximum capacity if overconsumption is possible) 



The s390 approach
Integration into the Linux kernel

CPU 1 CPU 2 CPU 3 CPU 4

Option B: Load balancer, scheduler group types approach

CPUs can be prevented from running tasks changes to the common load balancer

Add a new scheduler group type beyond group_overloaded
- vertical high → regular scheduling
- vertical low → get assigned to new group type if overconsumption is not possible, 

causes the load balancer to pull all tasks from those CPUs and 
prevents those CPUs to pull tasks themselves

CPU 5 CPU 6 CPU 7 CPU 8



Summary

1. Virtualized infrastructure

• Awareness of ordering requirements

• Transactions

• Yield explicitly

2. Overcommitment

• Prioritize entitled CPUs

• Capacity approach

• Load balancer, scheduler group types approach






	Slide 1
	Slide 2: Challenges in scheduling virtual CPUs 
	Slide 3: Agenda
	Slide 4: Warm up Basics of virtual CPU scheduling
	Slide 5: Warm up Basics of virtual CPU scheduling
	Slide 6: Complexity 1: Host overhead
	Slide 7: Complexity 1: Host overhead Utilization of physical CPUs
	Slide 8: Complexity 2: Virtualized infrastructure
	Slide 9: Complexity 2: Virtualized infrastructure
	Slide 10: Complexity 2: Virtualized infrastructure
	Slide 11: Complexity 2: Virtualized infrastructure Utilization of physical CPUs
	Slide 12: Complexity 2: Virtualized infrastructure Example: vhost
	Slide 13: Complexity 2: Virtualized infrastructure Scheduling impact
	Slide 14: Complexity 2: Virtualized infrastructure Ordering: possible solutions
	Slide 15: Complexity 3: Overcommitment
	Slide 16: Complexity 3: Overcommitment
	Slide 17: Complexity 3: Overcommitment
	Slide 18: Complexity 3: Overcommitment Utilization of physical CPUs
	Slide 19: Complexity 3: Overcommitment Issue: Interruption by other vcpus
	Slide 20: The s390 approach
	Slide 21: The s390 approach Horizontal polarization: Distribute equally
	Slide 22: The s390 approach Horizontal polarization: Distribute equally
	Slide 23: The s390 approach Horizontal polarization: Distribute equally
	Slide 24: The s390 approach Vertical polarization: Prioritize entitled CPUs
	Slide 25: The s390 approach Vertical polarization: Advantages
	Slide 26: The s390 approach Integration into the Linux kernel
	Slide 27: The s390 approach Integration into the Linux kernel
	Slide 28: Summary
	Slide 29
	Slide 30

