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Agenda

•Warm-up: Basics of virtual CPU scheduling

•Complexities

1.Host overhead

2.Virtualized infrastructure

3.Overcommitment

•The s390 approach



Warm up
Basics of virtual CPU scheduling
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Complexity 1: Host overhead
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Complexity 1: Host overhead
Utilization of physical CPUs

CPU 

vCPU

logs

memory

vCPU cannot use 100% of physical CPU

Host has do decide when to schedule vCPU away



Complexity 2: Virtualized infrastructure
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Complexity 2: Virtualized infrastructure 
Utilization of physical CPUs

Infrastructure needs to be mapped to physical CPU

Increased contention for physical CPUs
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memory

infrastructure



Complexity 2: Virtualized infrastructure 
Example: vhost
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socket kworker
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ioeventfd irqfd
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Complexity 2: Virtualized infrastructure 
Scheduling impact
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Complexity 2: Virtualized infrastructure 
Ordering: possible solutions

A B A A C D A BOrder processes

A B A A C D A BTransaction

A B A A C D A BYield specifically

kworker

prioritize tolerate one-off outliers



Complexity 3: Overcommitment



Complexity 3: Overcommitment
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Complexity 3: Overcommitment
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Complexity 3: Overcommitment
Utilization of physical CPUs

competition with other vCPUs

which vCPUs go well together?

→ vCPU experiences steal time

CPU 

vCPU 3

logs

memory

infrastructure

vCPU 1

vCPU 2



Complexity 3: Overcommitment
Issue: Interruption by other vcpus

A A A A A A A A1 vCPU

A A B B A A B B2 vCPUs

A B C D A B C D4 vCPUs

Point in time Duration



The s390 approach



The s390 approach
Horizontal polarization: Distribute equally
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The s390 approach
Horizontal polarization: Distribute equally
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The s390 approach
Vertical polarization: Prioritize entitled CPUs
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The s390 approach
Vertical polarization: Advantages

Clearer scheduling of vCPUs
• Avoid steal time
• Better topology guarantees, yielding better cache locality

Collaboration between PR/SM and LPARs
• Gather CPU utilization of other LPARs
• Observe local steal time

Better control for the guest systems



The s390 approach
Integration into the Linux kernel

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6 CPU 7 CPU 8

Option A: CPU capacity approach

less invasive, changes to arch/ only not as strict, vertical lows may still run tasks

Assign CPU capacities based on the polarization of the CPU
- vertical high → maximum capacity
- vertical low → small capacity (or maximum capacity if overconsumption is possible) 



The s390 approach
Integration into the Linux kernel

CPU 1 CPU 2 CPU 3 CPU 4

Option B: Load balancer, scheduler group types approach

CPUs can be prevented from running tasks changes to the common load balancer

Add a new scheduler group type beyond group_overloaded
- vertical high → regular scheduling
- vertical low → get assigned to new group type if overconsumption is not possible, 

causes the load balancer to pull all tasks from those CPUs and 
prevents those CPUs to pull tasks themselves

CPU 5 CPU 6 CPU 7 CPU 8



Summary

1. Virtualized infrastructure

• Awareness of ordering requirements

• Transactions

• Yield explicitly

2. Overcommitment

• Prioritize entitled CPUs

• Capacity approach

• Load balancer, scheduler group types approach
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