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Introduction

https://github.com/computexpresslink/libcxImi

Influenced by fmapi-tests + libnvme

CXL 3.1 Sections 9.19 (Manageability Model for CXL Devices) &
9.20 (Component Command Interface)
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https://github.com/computexpresslink/libcxlmi

Introduction

Is not intended to compete with libcxl from ndctl.
o Supports OoB (MCTP) and Linux ioctl (mbox) based CCls.

Users: BMC, Fabric managers, Firmware, etc.
o Type3 SLD, Type3 MLD (FM owned) or a CXL Switch.
o Does not support G-FAM devices.

You get what you ask for. Users must provide the correct
command to the correct CXL component.

Concurrency is left to users. Libraries should not hold locks.
Endianness-aware.
Ideal scenario: provide a standard and open building block

for FMs, openBMC, etc. State of the art is very fragmented
and obscure.
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Example: Simple MCTP component discovery/DBUS

/I link with -lexImi
#include <libcximi.h>

int main(int argc, char **argv)

{
int rc = EXIT_FAILURE, num_ep;
struct cxlmi_ctx *ctx;
struct cxImi_endpoint *ep, *tmp;
ctx = cxlmi_new_ctx(stdout, DEFAULT_LOGLEVEL); _int show_device_info(struct cxImi_endpoint *ep)
if (Ictx) { - A
fprintf(stderr, "cannot create new context object\n"); int rc;
return rc; struct cxlmi_cmd_identify id;
I rc = cxlmi_cmd_identify(ep, NULL, &id);
num_ep = cxlmi_scan_mctp(ctx); if (rc)
if (num_ep < 0) { return rc;
fprintf(stderr, "dbus scan error\n");
goto free_ctx; printf("serial number: 0x%Ix\n", (uint64_t)id.serial_num);
} else if (num_ep == 0) printf("Vendor 1D:%04x Device 1D:%04x\n", id.vendor_id, id.device_id);
printf("no endpoints found\n");
else return 0;
printf("found %d endpoint(s)\n", num_ep); }
cximi_for_each_endpoint_safe(ctx, ep, tmp) {
rc = show_device_info(ep);
cximi_close(ep);
}
free_ctx:
cximi_free_ctx(ctx);
return rc;

}
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APIl: Component Discovery

o Setup the path for CCI commands to be sent.
o Individual MCTP nid:eid endpoint. (cximi_open_mctp())

o Enumerate and open all MCTP endpoints (Dbus). (cx/imi_scan_mctp())

o Individual, Linux-specific sysfs device endpoint. (cximi_open())

o By default, it will also probe the endpoint to get the CXL component this belongs to:

either a CXL Switch or a Type3 device.

o While the library context can track different representations of CCls for the same
underlying CXL component, duplicates of each type is forbidden.

o This matches the component requirement of 1:1 MCTP and a primary Mailbox.
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API: Sending CClI Commands (1/5)

o Best express: what command to send to what endpoint, and how (direct or tunneled)

o Same name for both the functions to send CXL commands and the respective payload
data structure(s):
cximi_cmd_[memdev|fmapi_]<cmd_name>

int cxImi_cmd_memdev_sanitize(struct cximi_endpoint *ep, struct cximi_tunnel_info *ti);

int cxlmi_cmd_fmapi_get_qos_status(struct cxlmi_endpoint *ep, struct cximi_cmd_fmapi_get_qos_status {
struct cxImi_tunnel_info *ti, uint8_t backpressure_avg_percentage;
struct cxiImi_cmd_fmapi_get_qos_status *ret); I3
int cximi_cmd_transfer_fw(struct cxlmi_endpoint *ep, struct cximi_cmd_transfer_fw {
struct cxImi_tunnel_info *ti, uint8_t action;
struct cxlmi_cmd_transfer_fw *in); uint8_t slot;

uint8_t data[];

int cxlmi_cmd_get_supported_logs_sublist(struct cxImi_endpoint *ep,
struct cxlmi_tunnel_info *ti,
struct cxImi_cmd_get_supported_logs_sublist_req *in
struct cxImi_cmd_get_supported_logs_sublist_rsp *ret);
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API: Sending CClI Commands (2/5)

o Tunneling Commands to an MLD through a CXL Switch

struct cxImi_cmd_fmapi_set_Id_allocations_req *alloc_req;
struct cxImi_cmd_fmapi_set_Id_allocations_rsp *alloc_rsp;
struct cximi_tunnel_info ti = {

level = 1,

Jport = 3, /* cmd sent to a Switch */

X

[* ... prepare payload buffers */
rc = cxImi_cmd_fmapi_set_Id_allocations(ep, &ti, alloc_req, alloc_rsp);

if (rc) {
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API: Sending CClI Commands (3/5) |

o Tunneling Commands to an LD in an MLD

struct cxImi_cmd_memdev_set_lsa *Isa = arm_lsa(offset, data);

struct cximi_tunnel_info ti = {
level =1,
Ad =1, /* cmd sent to an MLD */

X

rc = cxlmi_cmd_memdev_set_lIsa(ep, &ti, Isa);

if (rc) {

/* handle error */
}
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API: Sending CCI Commands (4/5) ‘

o Tunneling Commands to an LD in an MLD through a CXL Switch

struct cxImi_cmd_memdev_set_lsa *Isa = arm_|sa(offset, data);

struct cximi_tunnel_info ti = {
level = 2,
.port = 3, /* outer tunnel */
Ad =1, /¥ inner tunnel */

X

rc = cxlmi_cmd_memdev_set_Isa(ep, &ti, Isa);

if (rc) {

/* handle error */
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API: Sending CClI Commands (5/5)

o Return values are either:

-1: internal error (library level), with errno set,
or,
the respective CXL-specific return code (cx/mi_cmd_retcode enum).

err = cxlmi_cmd_activate_fw(ep, NULL, &fw); // cmd is known to be bg-capable
if (err && err 1= CXLMI_RET_BACKGROUND) {
if (err > CXLMI_RET_SUCCESS) //>0
fprintf(stderr, “could not activate fw: %s\n", cxImi_cmd_retcode_tostr(err));
return err,
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Discussion

o Is this of value to the general community?
o There has been no release, hence nothing is set in stone.

o Opens, TODO:
o Testing, testing, testing.
o gemu has been very valuable.
o MCTP-capable i2c controller (aspeed-i2¢).
o Kernel i2c transport driver in v5.18.

o Tunneling commands to the LD-Pool CCl in an MHD.
o cxl.io (mbox CCI)

o Finish adding the full CXL 3.1 command set.
o Many commands are there, but still many missing (fairly trival to add).
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Thank you.
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Backup: MCTP in Linux

o Management Component Transport Protocol (MCTP). Server-oriented components.
o Introduced in Linux v5.16 (Jeremy Kerr).
o Common hardware transports:
o 12¢/SMBus (kernel device-tree), PCle Vendor Defined Messages (VDM) and serial (ttySn).
o Standards are produced by DMTF, ie:
o MCTP over i2¢/SMBus (DSP0237).
o CXL Fabric Manager APl over MCTP Binding Specification (DSP0324).

o MCTP stack management software:
o CodeConstruct/mctp: MCTP userspace tools (github.com)

o Standard socket API.
o Struct sockaddr mctp
o Extend 255 endpoint support by adding the netword-id for address space.

o socket will only receive messages sent on that network (unless MCTP_NET_ANY)
o Networks need to be on physically separate busses.

o Kernel handles tags automatically (requests using MCTP_TAG_OWNER).
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https://www.dmtf.org/sites/default/files/standards/documents/DSP0237_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0234_1.0.0.pdf
https://github.com/CodeConstruct/mctp

