libcxImi
a CXL Management Interace library

Linux Plumbers Conference
Davidlohr Bueso. Vienna, Austria. September 2024.

SAMSUNG THE NEXT CREATION STARTS HERE

Introduction

https://github.com/computexpresslink/libcxImi

Influenced by fmapi-tests + libnvme

CXL 3.1 Sections 9.19 (Manageability Model for CXL Devices) &
9.20 (Component Command Interface)

THE NEXT CREATION STARTS HERE

https://github.com/computexpresslink/libcxlmi

Introduction

Is not intended to compete with libcxl from ndctl.
o Supports OoB (MCTP) and Linux ioctl (mbox) based CCls.

Users: BMC, Fabric managers, Firmware, etc.
o Type3 SLD, Type3 MLD (FM owned) or a CXL Switch.
o Does not support G-FAM devices.

You get what you ask for. Users must provide the correct
command to the correct CXL component.

Concurrency is left to users. Libraries should not hold locks.
Endianness-aware.
Ideal scenario: provide a standard and open building block

for FMs, openBMC, etc. State of the art is very fragmented
and obscure.

THE NEXT CREATION STARTS HERE

Example: Simple MCTP component discovery/DBUS

/I link with -lexImi
#include <libcximi.h>

int main(int argc, char **argv)

{
int rc = EXIT_FAILURE, num_ep;
struct cxlmi_ctx *ctx;
struct cxImi_endpoint *ep, *tmp;
ctx = cxlmi_new_ctx(stdout, DEFAULT_LOGLEVEL); _int show_device_info(struct cxImi_endpoint *ep)
if (Ictx) { - A
fprintf(stderr, "cannot create new context object\n"); int rc;
return rc; struct cxlmi_cmd_identify id;
I rc = cxlmi_cmd_identify(ep, NULL, &id);
num_ep = cxlmi_scan_mctp(ctx); if (rc)
if (num_ep < 0) { return rc;
fprintf(stderr, "dbus scan error\n");
goto free_ctx; printf("serial number: 0x%Ix\n", (uint64_t)id.serial_num);
} else if (num_ep == 0) printf("Vendor 1D:%04x Device 1D:%04x\n", id.vendor_id, id.device_id);
printf("no endpoints found\n");
else return 0;
printf("found %d endpoint(s)\n", num_ep); }
cximi_for_each_endpoint_safe(ctx, ep, tmp) {
rc = show_device_info(ep);
cximi_close(ep);
}
free_ctx:
cximi_free_ctx(ctx);
return rc;

}

THE NEXT CREATION STARTS HERE

APIl: Component Discovery

o Setup the path for CCI commands to be sent.
o Individual MCTP nid:eid endpoint. (cximi_open_mctp())

o Enumerate and open all MCTP endpoints (Dbus). (cx/imi_scan_mctp())

o Individual, Linux-specific sysfs device endpoint. (cximi_open())

o By default, it will also probe the endpoint to get the CXL component this belongs to:

either a CXL Switch or a Type3 device.

o While the library context can track different representations of CCls for the same
underlying CXL component, duplicates of each type is forbidden.

o This matches the component requirement of 1:1 MCTP and a primary Mailbox.

THE NEXT CREATION STARTS HERE

API: Sending CClI Commands (1/5)

o Best express: what command to send to what endpoint, and how (direct or tunneled)

o Same name for both the functions to send CXL commands and the respective payload
data structure(s):
cximi_cmd_[memdev|fmapi_]<cmd_name>

int cxImi_cmd_memdev_sanitize(struct cximi_endpoint *ep, struct cximi_tunnel_info *ti);

int cxlmi_cmd_fmapi_get_qos_status(struct cxlmi_endpoint *ep, struct cximi_cmd_fmapi_get_qos_status {
struct cxImi_tunnel_info *ti, uint8_t backpressure_avg_percentage;
struct cxiImi_cmd_fmapi_get_qos_status *ret); I3
int cximi_cmd_transfer_fw(struct cxlmi_endpoint *ep, struct cximi_cmd_transfer_fw {
struct cxImi_tunnel_info *ti, uint8_t action;
struct cxlmi_cmd_transfer_fw *in); uint8_t slot;

uint8_t data[];

int cxlmi_cmd_get_supported_logs_sublist(struct cxImi_endpoint *ep,
struct cxlmi_tunnel_info *ti,
struct cxImi_cmd_get_supported_logs_sublist_req *in
struct cxImi_cmd_get_supported_logs_sublist_rsp *ret);

THE NEXT CREATION STARTS HERE

API: Sending CClI Commands (2/5)

o Tunneling Commands to an MLD through a CXL Switch

struct cxImi_cmd_fmapi_set_Id_allocations_req *alloc_req;
struct cxImi_cmd_fmapi_set_Id_allocations_rsp *alloc_rsp;
struct cximi_tunnel_info ti = {

level = 1,

Jport = 3, /* cmd sent to a Switch */

X

[* ... prepare payload buffers */
rc = cxImi_cmd_fmapi_set_Id_allocations(ep, &ti, alloc_req, alloc_rsp);

if (rc) {

/* handle error */ [Tunnel Management)
} Command Request

Port =X }_,

Set LD Allocations
Reguest
\ .
MCTP-Capable If/F —
™y

FM

Tunnel Management
Command Response

Response

- Length —
Set LD Allocations

N

A

Switch

Y,

Set LD Allocations
Request

MCTP PCle VDM

-

Set LD Allocations
Response

E Set LD E
| Allocations |:
Request |:

L)

: FM-Owned |
LD

[L]
[] L]
[L]
[1]
H Set LD i
i| Allocations |+
- Response i
] [

THE NEXT CREATION STARTS HERE

API: Sending CClI Commands (3/5) |

o Tunneling Commands to an LD in an MLD

struct cxImi_cmd_memdev_set_lsa *Isa = arm_lsa(offset, data);

struct cximi_tunnel_info ti = {
level =1,
Ad =1, /* cmd sent to an MLD */

X

rc = cxlmi_cmd_memdev_set_lIsa(ep, &ti, Isa);

if (rc) {

/* handle error */
}

FM

~
Tunnel Management
Command Request

D=1
Set LSA Request

o

MCTP-Capable I/F —

Tunnel Management
Command Response

Length
Set LSA Response

|

.

THE NEXT CREATION STARTS HERE

API: Sending CCI Commands (4/5) ‘

o Tunneling Commands to an LD in an MLD through a CXL Switch

struct cxImi_cmd_memdev_set_lsa *Isa = arm_|sa(offset, data);

struct cximi_tunnel_info ti = {
level = 2,
.port = 3, /* outer tunnel */
Ad =1, /¥ inner tunnel */

X

rc = cxlmi_cmd_memdev_set_Isa(ep, &ti, Isa);

if (rc) {

/* handle error */

} —f s

FM

/
Tunnel Management
Command Request
Poet = X

Maragerers
Command Reguest

S

MCTP-Capable I/F

p
Tunnel Management
Command Response

p

Switch

4 ~
Tunnel Management

Command Request
D=1
Set LSA Request

. /
MCTP PCle VDM
(&
Tunnel Management
Command Response

Length
Set LSA Response
.

~

LD

I —
LDO

— (&0
LD 2

THE NEXT CREATION STARTS HERE

API: Sending CClI Commands (5/5)

o Return values are either:

-1: internal error (library level), with errno set,
or,
the respective CXL-specific return code (cx/mi_cmd_retcode enum).

err = cxlmi_cmd_activate_fw(ep, NULL, &fw); // cmd is known to be bg-capable
if (err && err 1= CXLMI_RET_BACKGROUND) {
if (err > CXLMI_RET_SUCCESS) //>0
fprintf(stderr, “could not activate fw: %s\n", cxImi_cmd_retcode_tostr(err));
return err,

THE NEXT CREATION STARTS HERE

Discussion

o Is this of value to the general community?
o There has been no release, hence nothing is set in stone.

o Opens, TODO:
o Testing, testing, testing.
o gemu has been very valuable.
o MCTP-capable i2c controller (aspeed-i2¢).
o Kernel i2c transport driver in v5.18.

o Tunneling commands to the LD-Pool CCl in an MHD.
o cxl.io (mbox CCI)

o Finish adding the full CXL 3.1 command set.
o Many commands are there, but still many missing (fairly trival to add).

THE NEXT CREATION STARTS HERE

Thank you.

SAMSUNG THE NEXT CREATION STARTS HERE

THE NEXT CREATION STARTS HERE

Placing memory at the forefront of future innovation and creative IT life

Backup: MCTP in Linux

o Management Component Transport Protocol (MCTP). Server-oriented components.
o Introduced in Linux v5.16 (Jeremy Kerr).
o Common hardware transports:
o 12¢/SMBus (kernel device-tree), PCle Vendor Defined Messages (VDM) and serial (ttySn).
o Standards are produced by DMTF, ie:
o MCTP over i2¢/SMBus (DSP0237).
o CXL Fabric Manager APl over MCTP Binding Specification (DSP0324).

o MCTP stack management software:
o CodeConstruct/mctp: MCTP userspace tools (github.com)

o Standard socket API.
o Struct sockaddr mctp
o Extend 255 endpoint support by adding the netword-id for address space.

o socket will only receive messages sent on that network (unless MCTP_NET_ANY)
o Networks need to be on physically separate busses.

o Kernel handles tags automatically (requests using MCTP_TAG_OWNER).

THE NEXT CREATION STARTS HERE

https://www.dmtf.org/sites/default/files/standards/documents/DSP0237_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0234_1.0.0.pdf
https://github.com/CodeConstruct/mctp

