
CXL benchmarking
Viacheslav Dubeyko
Adam Manzanares

1



2

Content

1. Problem declaration
2. Potential target use-cases
3. Emulation of target use-cases
4. Emulation of different types of CXL memory and CXL device types
5. Benchmarking framework
6. Benchmarking results interpretation
7. Open questions



3

CXL benchmarking problem

● Determination allocation policy and memory access pattern(s) capable of improving an application 
performance

● Determination memory (CXL) configuration and migration policy capable of decreasing a total latency of 
particular memory access pattern

● Emulation of CXL infrastructure with the goal of determination an efficient configuration
● Detection of CXL infrastructure bottlenecks
● Continuous detection/management of CXL infrastructure latency/performance degradation
● Elaboration of CXL infrastructure architecture capable of decreasing TCO cost



4

Potential target use-cases
● Huge relational and NoSQL databases
● In-memory database
● Social networks
● AI/ML workloads



5

Target use-cases emulation problem

Thread 1 Thread 2 Thread n…

Time

Memory

Allocate Read/
write FreeAllocate Read/

write Free
Memory access pattern



6

Memory access patterns emulation

Threads number

Allocation/Free size

Read size

Write size

Access size

Time gap between operations

Memory access pattern

Memory type selection

Allocated memory migration



7

Optimization problem

Time

Pattern 1 Pattern 2 Pattern 1 Pattern 2 Pattern n…

Application memory access pattern (not optimized)

Pattern 1 Pattern 2 Pattern 1 Pattern 2 Pattern n…

Application memory access pattern (optimized)
Optimization



8

Optimization problem

Local DRAM Local CXL

Switch 1

Remote CXL 1

Switch n

Remote CXL n

… Persistent memory

Memory 1

Capacity 1
Latency 1

Memory 2

Capacity 2
Latency 2

Memory 3

Capacity 3
Latency 3

Memory n

Capacity n
Latency n

…

{Capacity 1, …, Capacity n, Allocation policy} = f{Access pattern, Latency 1, …, Latency n}

Y = f(X)



9

Optimization workflow

Monitoring memory access parameters

Repeatable memory access patterns detection

Memory access patterns classification (frequency + duration)

Select (prioritize) memory access patterns for optimization 

Pattern analysis and detection of area(s) for optimization

Simulation of memory accesses distribution on various memory types

Best outcome searching

Interpretation and feasibility analysis of the found best outcome

Elaboration allocation and memory migration policy among memory tiers

Testing optimization policy



10

CXL memory types emulation
1. NUMA nodes [1, 6]
2. Hardware prototype [2, 3, 4]
3. RAMdisk on remote nodes [5]
4. QEMU-based emulation [7]
5. Mathematical model + empirical estimation???

a. HDD, SSD -> swap
b. List data structure as latency management

1. Li, Huaicheng, et al. ”Pond: CXL-based memory pooling systems for cloud platforms.” Proceedings of the 28th ACM International Conference on Architectural Support for Programming 
Languages and Operating Systems, Volume 2. 2023.

2. Gouk, D., Lee, S., Kwon, M. & Jung, M. Direct Access, High-Performance Memory Disaggregation with DirectCXL. 2022 USENIX Annual Technical Conference (USENIX ATC 22). pp. 
287-294 (2022,7)

3. M. Jung, ”Hello bytes, bye blocks: PCIe storage meets compute express link for memory expansion (CXL-SSD)”. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and 
File Systems (HotStorage ’22). Association for Computing Machinery, New York, NY, USA, 45–51.

4. M. Ahn et al., “Enabling CXL memory expansion for in-memory database management systems,” Data Management on New Hardware, 2022.
5. M. D. Flouris, E. P. Markatos. ”The Network RamDisk: Using remote memory on heterogeneous NOWs”. Cluster Computing 2, 4 (1999), 281–293.
6. Wahlgren, J., Gokhale, M. & Peng, I. Evaluating Emerging CXL-enabled Memory Pooling for HPC Systems. ArXiv Preprint ArXiv:2211.02682. (2022)
7. Raja Gond and Purushottam Kulkarni, emucxl: an emulation framework for CXL-based disaggregated memory applications. ArXiv Preprint arXiv:2404.08311 (2024)

NUMA nodes

1

Hardware prototype

2

RAMdisk (remote node)

3

QEMU-based emulation

4

Mathematical model???

5

Swap (persistent memory) 

List data structure as latency 
management



11

Potential memory type selection policies

● Priority-based allocation policy
○ higher priority in local DRAM, lower priority in CXL memory

● Size-based allocation policy
○ smaller sizes in local DRAM, bigger sizes in CXL memory

● Pre-fetch based allocation policy
○ pre-fetching from persistent memory into CXL memory

● Pre-allocation based policy
○ pre-allocation big chunks of memory (memory pool) in CXL memory

● Pre-mapping based policy
○ page faults elimination by pre-mapping physical memory pages for virtual address space

● Lifetime based allocation policy
○ short-lived memory chunks in local DRAM, long-lived memory chunks in CXL memory
○ application-based hints on memory chunks’ lifetime
○ lifetime-based memory heaps (short-lived, long-lived memory pools)



12

Potential allocated data migration policies

● Dynamic lifetime-based policy
○ initial allocation from short-lived memory pool (local DRAM)
○ growing lifetime initiates migration in longer-lived memory pools (CXL memory)

● Swap-based migration policy
○ swapping from local DRAM into CXL memory

● File system like interaction between local DRAM and CXL memory
○ pre-fetching portion of CXL memory content into local DRAM
○ hardware-based management???



13

CXL benchmarking framework

APP

CXL infrastructure

Memory 
access 
pattern 

detection 
tool

Memory 
access 
pattern 

emulation 
tool

CXL memory 
emulator

Benchmarking 
tracing tool 

Optimization 
tool

(ML based)



14

CXL Fabric Manager (FM) as benchmarking subsystem

App #1

App #n

…

Host #1

App #1

App #n

…

Host #n

…

CXL switch #1

CXL switch #n

…
Disaggregated

CXL memory
pool

CXL FM

ML subsystem

continuous 
benchmarking

+
policy 

elaboration



15

Open questions

● How to emulate memory latency?
● How to emulate application behavior?
● How to estimate application performance?
● How to treat benchmarking results?

○ How good is “good” numbers?
○ How bad is “bad” numbers?

● Isolated workload vs. real-life environment?
● How to identify and isolate code patterns determining application behavior sensitive to memory 

allocation types?
● How feasible is implementation of found best optimization outcomes?
● How useful can be an abstractness of mathematical model?



16

THANK YOU

QUESTIONS???



17

Allocate/free memory patterns

Application

Set of typical allocation sizes

Set of typical lifetimes 
of allocated memory

Distribution of allocation with time

Distribution of deallocation with time

Variation of distribution with time



18

Read/write memory patterns

Set of typical access sizes

Types of accessed 
memory (volatile, 

persistent)

ApplicationSet of typical latencies

Distribution of accesses with time

Total/average time gap between 
memory accesses

Distribution of time gaps with time



19

CXL benchmarking framework

(1) Record application’s memory access pattern

(2) Reproduce (emulate) + benchmark an application’s memory access pattern 

(3) Analyze and recognize memory access sub-patterns

(4) Classify sub-patterns on the basis of frequency, latency, and priority 

(5) Select sub-patterns for optimization

(6) Analyze sub-patterns peculiarities + select optimization techniques

(7) Emulate application’s memory access patterns with optimized sub-patterns

(8) Benchmark application’s memory access patterns on emulated CXL memory 

(9) Normalize benchmarking results

(10) Detection of responsible programming patterns and feasibility of optimization



20

Correct latency and performance estimation problem

Record memory access pattern

Distinguish memory allocation and memory access subpatterns

Redistribution memory allocation among memory tiers

Memory type latency emulation

Memory access reproduction

Benchmarking memory access pattern

How to emulate memory latency?

How to emulate application behavior?

How to estimate application performance?

How to treat benchmarking results?



21

Benchmarking result interpretation problem

● Measured numbers variation
● Latency emulation approach
● Measurement approach
● Approach of redistribution memory 

allocation among tiers
● Abstractness of mathematical model

How good is “good” numbers?

How bad is “bad” numbers?

Isolated workload vs. real-life environment?

How to identify and isolate code patterns determining 
application behavior sensitive to memory allocation types?

How feasible is implementation of found best optimization 
outcomes?


