Attested TLS

Muhammad Usama Sardar¹, Thomas Fossati², Hannes Tschofenig³, and Simon Frost⁴

¹TU Dresden, Germany

²Linaro, Lausanne, Switzerland

³University of Applied Sciences Bonn-Rhein-Sieg and Siemens, Germany

⁴Arm, Cambridge, UK

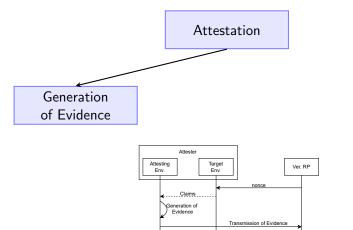
September 20, 2024

Outline

- Background and Problem Statement
- 2 Attested TLS (RA+TLS)

TLS Handshake Protocol with Client Authentication

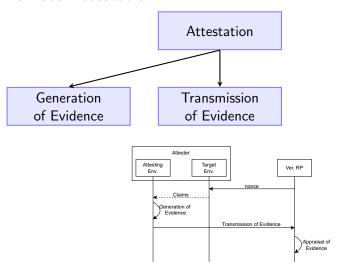
Good for network security


- Good for network security
- Not good for endpoint security

- Good for network security
- Not good for endpoint security
 - Keys

- Good for network security
- Not good for endpoint security
 - Keys
 - Workload

- Good for network security
- Not good for endpoint security
 - Keys
 - Workload
 - Platform (= HW + Bootloader + FW)


Remote Attestation

Generation of Evidence = Sampling of claims + Collection of claims + (Typically) signing of claims

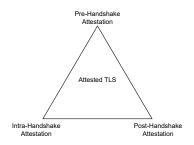

Appraisal of Evidence

Remote Attestation

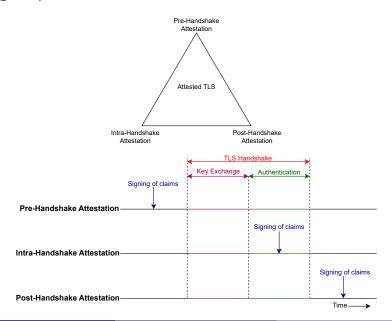
Generation of Evidence = Sampling of claims + Collection of claims + (Typically) signing of claims

Remote Attestation

Generation of Evidence = Sampling of claims + Collection of claims + (Typically) signing of claims

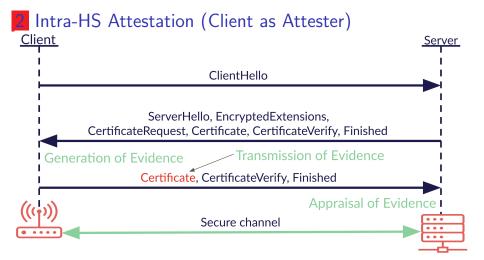

How to combine the two protocols securely in CC context?

Outline


Background and Problem Statement

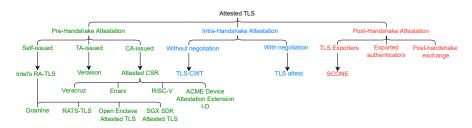
2 Attested TLS (RA+TLS)

Design Options



Design Options

Pre-HS Attestation (Client as Attester)



Post-HS Attestation (Client as Attester) Client <u>Server</u> ClientHello ServerHello, EncryptedExtensions, CertificateRequest, Certificate, CertificateVerify, Finished Certificate, CertificateVerify, Finished Secure channel IGeneration of Evidence Transmission of Evidence

Appraisal of Evidence

Design Options for Attested TLS

• Discussion: any other fundamental design option?

Specifications in Key Exchange Part

	RA-TLS ¹	TLS attest ²	SCONE ³
(a) Extensions	×	✓	×
(b) Attestation nonce	×	\checkmark	×

Discussion: any other fundamental design option?

¹T. Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

²Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

³Arnautov, Trach, Gregor, Thomas Knauth, Martin, Priebe, Lind, Muthukumaran, O'keeffe, Stillwell, et al., "SCONE: Secure Linux Containers with Intel SGX". 2016.

Specifications in Authentication Part

	RA-TLS ⁴	TLS attest ⁵	SCONE ⁶
(a) Lifetime of key	Short-term	Short-/Long-term	Short-term
(b)i. Info in Certificate	Evidence	Evidence	Public key
(b)ii. Signer	Self-signed	Self-/CA-signed	Self-signed
(b)iii. Format	X.509	Negotiated	X.509
(c) Extensions	×	\checkmark	×
(d) Exporters	×	\checkmark	\checkmark

Discussion: any other fundamental design option?

⁴T. Knauth, Steiner, Chakrabarti, Lei, Xing, and Vij, Integrating Remote Attestation with Transport Layer Security, 2018.

⁵Tschofenig, Sheffer, Howard, Mihalcea, Deshpande, Niemi, and Fossati, *Using Attestation in Transport Layer Security (TLS)* and Datagram Transport Layer Security (DTLS), 2024.

⁶Arnautov, Trach, Gregor, Thomas Knauth, Martin, Priebe, Lind, Muthukumaran, O'keeffe, Stillwell, et al., "SCONE: Secure Linux Containers with Intel SGX", 2016.

(Typical) Comparison/Tradeoffs

Attestation	Modification	Replay protection	Impact on connection establishment latency	Effective connection establishment latency
Pre-handshake	TA/CA	×	Medium $(t_{hs} + t_a)$	Low
Intra-handshake	TLS	\checkmark	$High\;(t_{hs}+t_g+t_a)$	Low
Post-handshake	Application	Possible	Low (t_{hs})	High (≥0.5RTT)

• Discussion: any other property?