

Updates on RISC-V Confidential Computing (CoVE) ISA, non-ISA

Ravi Sahita, Atish Patra Rivos Inc.

RISC-V Ratification Status of Confidential Computing <u>ISA</u> spec

ISA: Supervisor Domains and CoVE Spec status

Depends on RISC-V H-extension, AIA (for IMSIC) and IOMMU (for device assignment) ISA spec has completed 2 week TG review - there will be a public review phase after STABLE. spec repos: https://github.com/riscv/riscv-smmtt/releases/download/v0.1/smmtt-spec.pdf

Qemu, Open SBI POC

Initial Smmtt implementation per latest version of the spec in OpenSBI and QEMU. (credit Gregor Haas) Repo with build/run/debug instructions can be found at https://github.com/grg-haas/smmtt Contains automated tests and CI for these new features. Emulation of IOMTT and Smsdia is pending.

- Want to get feedback from community on the approach for:ISA for Isolation of Memory, IO Interrupts [and Device functions]non-ISA ABI between host and TSM

RISC-V Ratification Status of Confidential Computing non-ISA specs

CoVE spec and TSM POC

ABI spec defines TSM $\leftarrow \rightarrow$ Host interface and TSM $\leftarrow \rightarrow$ TVM (Guest) interfaces. v0.7 spec released as RC - completed 2 week TG review - will be revised to STABLE after comments addressed: https://github.com/riscv-non-isa/riscv-ap-tee/releases/download/v0.7/riscv-cove.pdf there will be a public review phase after STABLE.

Existing open source Rust TSM implementation of the CoVE ABI, called Salus: https://github.com/rivosinc/salus

CoVE-IO spec

v0.2 released:

https://github.com/riscv-non-isa/riscv-ap-tee-io/releases/download/v0.2.0/riscv-cove-io-v0.2.0.pdf Related discussion during PCIe authentication BOF

Existing RVI Priv ISA Modes

Priv ISA Extension - Supervisor Domains

Isolation between supervisor domains via Smmtt

Priv ISA extension approach - Supervisor Domains aka "Smsdid"

- per-hart CSRs to manage Supervisor Domain Identifier assignment
 - to manage access-control properties on harts (extends VMID, ASID)
 - Introduces new physical memory isolation programmed via a HW Memory Tracking Table
 - works with legacy PMP
- M-mode SD fence instructions
 - MFENCE.SPA & MINVAL.SPA
- M-mode CSRs msdcfg used to configure other assignments for SD
 - QoS, Debug, Trace, Interrupt controller

Memory Tracking Table Pointer register

M-mode Supervisor domain config register

Supervisor Domains memory isolation approach - "Smmtt" Extension

MTTL1 Access- permission encoding	Description
00b	The entry specifies access to the 4 KiB address space is not allowed for the domain.
01b	The entry specifies read and execute (but no write) access is allowed to the 4 KiB address space for the domain.
10b	The entry specifies read and write (but no execute) access is allowed to the 4 KiB address space for the domain.
11b	The entry specifies read , write and execute access is allowed to the 4 KiB address space for the domain.

Base + offset to generate PA for entry at this level MTT L2
Table Size : 16 MiB
of entries : 2 M
Addr Space/Entry: 32 MiB

MTT L1
Table Size : 4 KiB
of entries : 8 K
Addr Space/Entry: 4 KiB

Supervisor Domains - Approach for Hart and IO side access-control

Supervisor Domains "IO-MTT" Approach

Security Objective - DMA from the devices and the IOMMU linked with a SD must adhere strictly to the access protections encoded in the MTT of the respective SD.

Supervisor domains may be granted control over DMA-capable devices by assigning IOMMU instances to the SD.

Using the MTT, RDSM enforces that the IOMMU memory-mapped programming regions are access-restricted to the SD the IOMMU is assigned to.

RDSM configures SDCL to map device requests to SD (and MTT)

Supervisor Domains Interrupt Isolation approach - "Smsdia" Extension

- Security Objective RDSM must enforce integrity of interrupt delivery to the Supervisor Domain
- Smsdia depends on RISC-V AIA
- RDSM uses the msdcfg.sdicn to associate an interrupt controller with the SD
- RDSM uses MTT to enforce exclusive SD access to assigned interrupt controller
- RDSM uses CSRs msdeip and msdeie to get MSDEIP notification to M-mode when SD is not active.

Once an implemented interrupt controller is selected for SD, the H/S mode CSR interaction remains the same as defined in AIA.

Supervisor Domains - Summary

Also see:

- Smsqosid in the spec for QoS monitoring ID assignment to SD
- Smsdextdbg, Smsdexttrc controls for external debug and trace allowance for SD

Longer discussion in these slides -

https://static.sched.com/hosted_files/lsseu2024/2b/LSSEU24-RISC-V%20CoVE.pdf