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Introduction
● What we want?

● To run time-sensitive tasks with very low latency

● How can we achieve this?
● Running the RT task as uninterrupted as possible.

● If it’s running, it will be more responsive 
● If not, there are latency costs of switching contexts



One problem for RT
● Interruptions unrelated to RT task:

● Increases latency on that CPU

● schedule_work_on(cpu) & queue_work_on(cpu)
● Causes Inter Processor Interruptions (IPIs) on target cpu

● We can use only housekeeping CPUs for some of them
● Can we somehow avoid the rest?



Use of per-cpu caches
● This is a very efficient strategy for sharing global resources 

on SMP systems:
● Each CPU using the resource gets a per-cpu cache
● Allocation and freeing resources happen in the local cache
● When local cache is full (or empty), it accesses the global cache for 

expanding (or shrinking) the local cache.
● This reduces the occurrences of global locking & contention 

● Used in memcg, slub, swap.
● Issue: Actively reclaiming resources from remote per-cpu 

caches requires schedule_work_on(all_online_cpus).
● An IPI for each online cpu is issued, interrupting the work there



The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        schedule_work_on(cpu, s->work);

}
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/* Eventually do remote work */

for_each_online_cpu(cpu){

        schedule_work_on(cpu, s->work);

}

Generates 
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Bad for latency on that CPU



Getting rid of the schedule_work_on()
● Replace local_locks() with per-cpu spinlocks()

● Get local CPU’s spinlock() for each local operation
● Get remote CPU’s spinlock() for remote operation

● Instead of schedule_work_on() that cpu

● Remote operations don’t happen very often
● Contention on per-cpu spinlocks() should be very rare.

● Some work done on this, by Mel Gorman[1]:
● 01b44456a7aa7 ("mm/page_alloc: replace local_lock with normal spinlock") 



local_lock + IPI → spinlock
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        schedule_work_on(cpu, s->work);

}

/* Hotpath: work locally */

spin_lock(s->lock);

do_local_work_on(s);

spin_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        p = per_cpu_ptr(mystruct, cpu);

        spin_lock(p->lock)

        p->work(p);

        spin_unlock(p->lock)

}



Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention

● Getting cacheline exclusiveness 
Local CPU will mostly have that  ()’s   exclusivity, since remote 
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers
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Wait, are not spinlock() expensive?

● From previous studies [2]:
● Switching from local_locks to per-cpu spinlocks comes with a 

cost of 3-15 extra cycles per lock/unlock (x86_64, ARM64)
● local access only, after a remote access it will cost a cache bounce

● That may be too much for hotpaths 
● But on PREEMPT_RT=y

● local_locks are already per-cpu spinlocks.
● Above costs are already paid for, so why not?

● Grab remote spinlock, do the work, release



QPW: Queue PerCPU Work (on)



QPW
● Create an interface that allow:

● Keep working the same way on PREEMPT_RT=n
● Apply the new strategy in PREEMPT_RT=y

● For cases in which it applies

● It requires:
● A new helper to get the requested work done
● A new way of getting the remote cpu’s “local_lock”



QPW: Implementation [3]
● qpw locks: 

● Replace local_locks only on functions that can be remotely called
● PREEMPT_RT=n → local_locks
● PREEMPT_RT=y → per-cpu spinlocks (of the remote cpu)

● Uses the per-cpu spinlock already available in local_lock_t

● queue_percpu_work() & flush_percpu_work()
● Replace non-percpu functions 

● On uses we are sure not to touch the local hardware resources
● PREEMPT_RT=n → use the non-percpu functions
● PREEMPT_RT=y → grab target cpu spinlock, do the work, unlock



local_lock + IPI → spinlock
struct qpw_struct {

    struct work_struct work;

    int cpu;

};

qpw_lock(lock, cpu){

    spin_lock(per_cpu_ptr(lock, cpu));

}

qpw_unlock(lock, cpu) {

    spin_unlock(per_cpu_ptr(lock, cpu));

}

queue_percpu_work_on(cpu, qpw) {

    p = qpw->work;

    p->func(qpw);

}

flush_percpu_work_on(qpw) {

    /* do nothing */

}



Bugs that would vanish
[342431.665417] INFO: task grub2-probe:24484 blocked for more than 622 seconds.

[342431.665515] task:grub2-probe state:D  stack:0  pid:24484 ppid:24455 flags:0x00004002

[342431.665523] Call Trace:

[342431.665525]  <TASK>

[342431.665527]  __schedule+0x22a/0x580

[342431.665537]  schedule+0x30/0x80

[342431.665539]  schedule_timeout+0x153/0x190

[342431.665543]  ? preempt_schedule_thunk+0x16/0x30

[342431.665548]  ? preempt_count_add+0x70/0xa0

[342431.665554]  __wait_for_common+0x8b/0x1c0

[342431.665557]  ? __pfx_schedule_timeout+0x10/0x10

[342431.665560]  __flush_work.isra.0+0x15b/0x220



QPW: Implementation [3]
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        schedule_work_on(cpu, s->work);

}

flush_work(s->work);

/* Hotpath: work locally */

qpw_lock(s->lock, n);

do_local_work_on(s);

qpw_unlock(s->lock, n);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        queue_percpu_work_on(cpu, s->qpw);

}

flush_percpu_work(s→qpw);



QPW: Implementation [3]
● Selected 3 examples for testing in original patchset

● memcontrol, slub, swap
● Tested on 128-cpu x86_64 machine, 24-cpu ARM64 machine
● Works fine, reduces latency.

● Test results: (ARM64 machine)
● Cyclictest: Max latency 58us → 40us
● Oslat:        Max latency   3us → 2us



QPW: Implementation [3]
● Advantages:

● Can convert usages on demand 
● Does not mess with other uses

● Disadvantages:
● Need to convert case by case, desired function needs to 

receive a cpu parameter
● Need to be sure the remote work won’t touch local cpu data

● Can be hard to guarantee



QPW: Another implementation
● “Emulate” this_cpu & smp_processor_id

● Create a new field ecpu in thread_info 
● Use it to get the results of this_cpu* and smp_processor_id

● Change it on:
● Entry of queue_percpu_work_on() to the “emulated” cpu number
● Exit of queue_percpu_work_on() to the physical cpu number
● On task migration, change the ecpu to new physical cpu

● Only if ecpu was the same as the old physical cpu number
● To convert a case, just rename 

● queue_work_on() → queue_percpu_work_on()
● flush_work()         → flush_percpu_work()



QPW: Another implementation
● Advantages:

● More elegant approach
● No new structs or locks, just a couple helpers

● queue_percpu_work_on() and flush_percpu_work(), which is empty.
● Much easier to convert functions
● Can replace regular workqueue functions

● If we create a raw version that uses actual cpu number & apply it on cases that deal with 
local hardware resources.

● Disadvantages:
● A little more overhead than the previous, 

● Requires a per-cpu spinlock to avoid nested emulation (emulate + preempt + emulate)
● Require either to create an emulation layer, or  to unify the way archs implement 

this_cpu() and smp_processor_id()
● All but x86, s390 & ppc64 already use a cpu field in thread_info



QPW: Another points
● Enable / Disable by compile-time option

● And / or boot parameter
● Make it work only on Isolated CPUs

● Need to test latency & performance

● <Your suggestion here>



Thanks!

Questions?
Suggestions?



References:
[1] https://lore.kernel.org/all/20220624125423.6126-8-mgorman@techsingularity.net/
[2] https://lpc.events/event/17/contributions/1484/
[3] https://lore.kernel.org/all/20240622035815.569665-1-leobras@redhat.com/
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Introduction
● What we want?

● To run time-sensitive tasks with very low latency 
● Inside KVM guests!

● What’s the issue?
● Getting latency violations in cyclictest & oslat 
● Cause: rcuc/N thread running in same CPU as the RT task

● What’s rcuc/N?



Example
  trace.dat:        CPU 2/KVM-1472961 [004] d..2. 85031.708830: sched_switch:         CPU 2/KVM:1472961 [98] R ==> rcuc/4:62 [95]

  trace.dat:           rcuc/4-62                [004] d..2. 85031.708844: sched_switch:         rcuc/4:62 [95] S ==> CPU 2/KVM:1472961 [98]

  trace.dat:        CPU 2/KVM-1472961 [004] d..1. 85031.708854: kvm_entry:              vcpu 2 rip 0xffffffffa8c4eac2

  trace.dat:        CPU 2/KVM-1472961 [004] d..1. 85031.708857: kvm_exit:                reason PREEMPTION_TIMER rip 0xffffffffa8... info 0 0

  trace.dat:        CPU 2/KVM-1472961 [004] d..1. 85031.708859: kvm_entry:              vcpu 2 rip 0xffffffffa8c4eac2

  trace.dat:        CPU 2/KVM-1472961 [004] d..1. 85031.708869: kvm_exit:                 reason MSR_WRITE rip 0xffffffffa806f3a4 info 0 0

  trace.dat:        CPU 2/KVM-1472961 [004] d..1. 85031.708870: kvm_entry:               vcpu 2 rip 0xffffffffa806f3a6

trace-3.dat:           <idle>-0          [002] d.h1. 85031.708874: local_timer_entry:    vector=236

trace-3.dat:           <idle>-0          [002] d.h1. 85031.708876: hrtimer_expire_entry: hrtimer=0xffff... now=54… function=hrtimer_wakeup/0x0

trace-3.dat:           <idle>-0          [002] dNh1. 85031.708877: hrtimer_expire_exit:  hrtimer=0xffff9d910079be18

trace-3.dat:           <idle>-0          [002] dNh1. 85031.708882: local_timer_exit:     vector=236

trace-3.dat:           <idle>-0          [002] d..2. 85031.708884: sched_switch:         swapper/2:0 [120] R ==> cyclictest:1599 [4]

trace-3.dat:       cyclictest-1599    [002] ..... 85031.708905: print:                tracing_mark_write: hit latency threshold (63 > 50)



rcuc/N thread 
● Threads that run rcu_core when needed

● There is one per CPU, and it’s invoked by timer interrupt
● They help RCU to work when the system is busy

● Needs to run if a quiescent state took to long to happen 
on that CPU, after a grace period



rcuc/N thread 
● Threads that run rcu_core when needed

● There is one per CPU, and it’s invoked by timer interrupt
● They help RCU to work when the system is busy

● Needs to run if a quiescent state took to long to happen 
on that CPU, after a grace period

● RCU ? Quiescent state? Grace period? What?



RCU [1]
● It’s a very efficient parallel programming mechanism

● On read: Very efficient, requires no atomic operations
● On write: replace protected memory with a new one

● Then it waits until no other CPU is reading the old memory
● Before it can free it and/or continue the procedure

● When not deferring any RCU-protected memory:
● CPU is said to be in quiescent state



The issue
● If a CPU stays too long without reporting a quiescent 

state, the running process needs to be interrupted so 
that CPU can report, and the waiting CPU can get 
unstuck.

● That long running task is exactly the case of a guest 
vCPU, which is running an RT task on an isolated CPU, 
and pooling for network, for example.



The issue
● After the guest is running for some time, and a 

quiescent state is required on that CPU:
● Timer interrupt provokes guest_exit()
● Timer handler checks RCU needs

● And then sched-in that cpu’s rcuc/N thread

● After it finishes reporting the quiescent state, it scheds-in 
the guest vCPU again

● All this procedure causes a lot of latency into the task



The solution
● Guest running state is considered an extended 

quiescent state, as RCU-protected areas are not used 
for a long time.

● KVM reports a quiescent state on guest entry, but for some 
reason, not on guest exit.

● So, report a quiescent state in guest exit, so every 
pending quiescent state reporting request that 
happened while the guest ran gets satisfied, and rcuc/N 
doesn’t need to run. [2]



The solution
● This solution reduces a lot the reproduction rate, but it 

still happens sometimes. 
● Reason: Any CPU can request a quiescent state report 

between guest_exit and the timer interrupt handler 
checking, and it this will cause rcuc/N to wake, since there is 
a new quiescent state request.

● The solution on top of the solution is RCU patience[3]:
● A new command-line option that allows the kernel to wait 

for a certain time since the oldest valid unreported 
quiescent state request before waking up rcuc/N.  



Results [4]
● Latency improvement:

● Max latency on guest cyclictest went from 58us → 37us 
● Performance gains in RT host

● There were marginal gains in cpu cycles inside the VM 
(~0.6%), due to number of guest_exit and time spent inside 
the guest balancing themselves

● Performance gains in non-RT host
● Both the average time spend inside the VM and the number 

of VM entries raised, causing the VM to have ~4.5% more 
cpu cycles available to run it’s workload



Conclusion
● On top of latency improvement, this change could also 

achieve almost 5% improvement in cpu time available 
for VMs at non-RT kernels, so it may be of interest to 
those who sell VM time.

● This solution was merged in mainline as follows:
● RCU/KVM [2] →  Merged on 2024-09-06 
● RCU Patience [3] → Merged on 2024-07-15



Thanks!

Questions?
Suggestions?



References:
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