
QPW: How to improve
latency and CPU
Isolation without cost
Leonardo Brás Soares Passos
Linux Plumbers Conference 2024

whoami
● Leonardo Brás Soares Passos
● Work @ Red Hat (Virt-team)

● Linux Kernel
● Improving CPU Isolation & RT
● Reducing RT guest latency
● Improving RISC-V arch code (as a side quest)

● Find me: leobras @ {redhat.com, GitLab, GitHub, IRC}

Introduction
● What we want?

● To run time-sensitive tasks with very low latency

● How can we achieve this?
● Running the RT task as uninterrupted as possible.

● If it’s running, it will be more responsive
● If not, there are latency costs of switching contexts

One problem for RT
● Interruptions unrelated to RT task:

● Increases latency on that CPU

● schedule_work_on(cpu) & queue_work_on(cpu)
● Causes Inter Processor Interruptions (IPIs) on target cpu

● We can use only housekeeping CPUs for some of them
● Can we somehow avoid the rest?

Use of per-cpu caches
● This is a very efficient strategy for sharing global resources

on SMP systems:
● Each CPU using the resource gets a per-cpu cache
● Allocation and freeing resources happen in the local cache
● When local cache is full (or empty), it accesses the global cache for

expanding (or shrinking) the local cache.
● This reduces the occurrences of global locking & contention

● Used in memcg, slub, swap.
● Issue: Actively reclaiming resources from remote per-cpu

caches requires schedule_work_on(all_online_cpus).
● An IPI for each online cpu is issued, interrupting the work there

The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

Generates
an IPI for a
remote CPU

The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

Generates
an IPI for a
remote CPU

Bad for latency on that CPU

Getting rid of the schedule_work_on()
● Replace local_locks() with per-cpu spinlocks()

● Get local CPU’s spinlock() for each local operation
● Get remote CPU’s spinlock() for remote operation

● Instead of schedule_work_on() that cpu

● Remote operations don’t happen very often
● Contention on per-cpu spinlocks() should be very rare.

● Some work done on this, by Mel Gorman[1]:
● 01b44456a7aa7 ("mm/page_alloc: replace local_lock with normal spinlock")

local_lock + IPI → spinlock
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

/* Hotpath: work locally */

spin_lock(s->lock);

do_local_work_on(s);

spin_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 p = per_cpu_ptr(mystruct, cpu);

 spin_lock(p->lock)

 p->work(p);

 spin_unlock(p->lock)

}

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention

● Getting cacheline exclusiveness
Local CPU will mostly have that ()’s exclusivity, since remote
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness
Local CPU will mostly have that ()’s exclusivity, since remote
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers

Are not supposed to be that expensive

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness
● Local CPU will mostly have that per-cpu spinlock()’s cacheline

exclusiveness already, since remote operations don’t happen often
● Invalidation will only happen after a remote operation

● Memory barriers

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness
● Local CPU will mostly have that per-cpu spinlock()’s cacheline

exclusiveness already, since remote operations don’t happen often
● Invalidation will only happen after a remote operation

● Memory barriers
● Are not supposed to be that expensive

Wait, are not spinlock() expensive?

● From previous studies [2]:
● Switching from local_locks to per-cpu spinlocks comes with a

cost of 3-15 extra cycles per lock/unlock (x86_64, ARM64)
● local access only, after a remote access it will cost a cache bounce

● That may be too much for hotpaths
● But on PREEMPT_RT=y

● local_locks are already per-cpu spinlocks.
● Above costs are already paid for, so why not?

● Grab remote spinlock, do the work, release

QPW: Queue PerCPU Work (on)

QPW
● Create an interface that allow:

● Keep working the same way on PREEMPT_RT=n
● Apply the new strategy in PREEMPT_RT=y

● For cases in which it applies

● It requires:
● A new helper to get the requested work done
● A new way of getting the remote cpu’s “local_lock”

QPW: Implementation [3]
● qpw locks:

● Replace local_locks only on functions that can be remotely called
● PREEMPT_RT=n → local_locks
● PREEMPT_RT=y → per-cpu spinlocks (of the remote cpu)

● Uses the per-cpu spinlock already available in local_lock_t

● queue_percpu_work() & flush_percpu_work()
● Replace non-percpu functions

● On uses we are sure not to touch the local hardware resources
● PREEMPT_RT=n → use the non-percpu functions
● PREEMPT_RT=y → grab target cpu spinlock, do the work, unlock

local_lock + IPI → spinlock
struct qpw_struct {

 struct work_struct work;

 int cpu;

};

qpw_lock(lock, cpu){

 spin_lock(per_cpu_ptr(lock, cpu));

}

qpw_unlock(lock, cpu) {

 spin_unlock(per_cpu_ptr(lock, cpu));

}

queue_percpu_work_on(cpu, qpw) {

 p = qpw->work;

 p->func(qpw);

}

flush_percpu_work_on(qpw) {

 /* do nothing */

}

Bugs that would vanish
[342431.665417] INFO: task grub2-probe:24484 blocked for more than 622 seconds.

[342431.665515] task:grub2-probe state:D stack:0 pid:24484 ppid:24455 flags:0x00004002

[342431.665523] Call Trace:

[342431.665525] <TASK>

[342431.665527] __schedule+0x22a/0x580

[342431.665537] schedule+0x30/0x80

[342431.665539] schedule_timeout+0x153/0x190

[342431.665543] ? preempt_schedule_thunk+0x16/0x30

[342431.665548] ? preempt_count_add+0x70/0xa0

[342431.665554] __wait_for_common+0x8b/0x1c0

[342431.665557] ? __pfx_schedule_timeout+0x10/0x10

[342431.665560] __flush_work.isra.0+0x15b/0x220

QPW: Implementation [3]
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

flush_work(s->work);

/* Hotpath: work locally */

qpw_lock(s->lock, n);

do_local_work_on(s);

qpw_unlock(s->lock, n);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 queue_percpu_work_on(cpu, s->qpw);

}

flush_percpu_work(s→qpw);

QPW: Implementation [3]
● Selected 3 examples for testing in original patchset

● memcontrol, slub, swap
● Tested on 128-cpu x86_64 machine, 24-cpu ARM64 machine
● Works fine, reduces latency.

● Test results: (ARM64 machine)
● Cyclictest: Max latency 58us → 40us
● Oslat: Max latency 3us → 2us

QPW: Implementation [3]
● Advantages:

● Can convert usages on demand
● Does not mess with other uses

● Disadvantages:
● Need to convert case by case, desired function needs to

receive a cpu parameter
● Need to be sure the remote work won’t touch local cpu data

● Can be hard to guarantee

QPW: Another implementation
● “Emulate” this_cpu & smp_processor_id

● Create a new field ecpu in thread_info
● Use it to get the results of this_cpu* and smp_processor_id

● Change it on:
● Entry of queue_percpu_work_on() to the “emulated” cpu number
● Exit of queue_percpu_work_on() to the physical cpu number
● On task migration, change the ecpu to new physical cpu

● Only if ecpu was the same as the old physical cpu number
● To convert a case, just rename

● queue_work_on() → queue_percpu_work_on()
● flush_work() → flush_percpu_work()

QPW: Another implementation
● Advantages:

● More elegant approach
● No new structs or locks, just a couple helpers

● queue_percpu_work_on() and flush_percpu_work(), which is empty.
● Much easier to convert functions
● Can replace regular workqueue functions

● If we create a raw version that uses actual cpu number & apply it on cases that deal with
local hardware resources.

● Disadvantages:
● A little more overhead than the previous,

● Requires a per-cpu spinlock to avoid nested emulation (emulate + preempt + emulate)
● Require either to create an emulation layer, or to unify the way archs implement

this_cpu() and smp_processor_id()
● All but x86, s390 & ppc64 already use a cpu field in thread_info

QPW: Another points
● Enable / Disable by compile-time option

● And / or boot parameter
● Make it work only on Isolated CPUs

● Need to test latency & performance

● <Your suggestion here>

Thanks!

Questions?
Suggestions?

References:
[1] https://lore.kernel.org/all/20220624125423.6126-8-mgorman@techsingularity.net/
[2] https://lpc.events/event/17/contributions/1484/
[3] https://lore.kernel.org/all/20240622035815.569665-1-leobras@redhat.com/

Next topic

Improving guest latency
& throughput by
improving RCU in KVM
Leonardo Brás Soares Passos
Linux Plumbers Conference 2024

Introduction
● What we want?

● To run time-sensitive tasks with very low latency
● Inside KVM guests!

● What’s the issue?
● Getting latency violations in cyclictest & oslat
● Cause: rcuc/N thread running in same CPU as the RT task

● What’s rcuc/N?

Example
 trace.dat: CPU 2/KVM-1472961 [004] d..2. 85031.708830: sched_switch: CPU 2/KVM:1472961 [98] R ==> rcuc/4:62 [95]

 trace.dat: rcuc/4-62 [004] d..2. 85031.708844: sched_switch: rcuc/4:62 [95] S ==> CPU 2/KVM:1472961 [98]

 trace.dat: CPU 2/KVM-1472961 [004] d..1. 85031.708854: kvm_entry: vcpu 2 rip 0xffffffffa8c4eac2

 trace.dat: CPU 2/KVM-1472961 [004] d..1. 85031.708857: kvm_exit: reason PREEMPTION_TIMER rip 0xffffffffa8... info 0 0

 trace.dat: CPU 2/KVM-1472961 [004] d..1. 85031.708859: kvm_entry: vcpu 2 rip 0xffffffffa8c4eac2

 trace.dat: CPU 2/KVM-1472961 [004] d..1. 85031.708869: kvm_exit: reason MSR_WRITE rip 0xffffffffa806f3a4 info 0 0

 trace.dat: CPU 2/KVM-1472961 [004] d..1. 85031.708870: kvm_entry: vcpu 2 rip 0xffffffffa806f3a6

trace-3.dat: <idle>-0 [002] d.h1. 85031.708874: local_timer_entry: vector=236

trace-3.dat: <idle>-0 [002] d.h1. 85031.708876: hrtimer_expire_entry: hrtimer=0xffff... now=54… function=hrtimer_wakeup/0x0

trace-3.dat: <idle>-0 [002] dNh1. 85031.708877: hrtimer_expire_exit: hrtimer=0xffff9d910079be18

trace-3.dat: <idle>-0 [002] dNh1. 85031.708882: local_timer_exit: vector=236

trace-3.dat: <idle>-0 [002] d..2. 85031.708884: sched_switch: swapper/2:0 [120] R ==> cyclictest:1599 [4]

trace-3.dat: cyclictest-1599 [002] 85031.708905: print: tracing_mark_write: hit latency threshold (63 > 50)

rcuc/N thread
● Threads that run rcu_core when needed

● There is one per CPU, and it’s invoked by timer interrupt
● They help RCU to work when the system is busy

● Needs to run if a quiescent state took to long to happen
on that CPU, after a grace period

rcuc/N thread
● Threads that run rcu_core when needed

● There is one per CPU, and it’s invoked by timer interrupt
● They help RCU to work when the system is busy

● Needs to run if a quiescent state took to long to happen
on that CPU, after a grace period

● RCU ? Quiescent state? Grace period? What?

RCU [1]
● It’s a very efficient parallel programming mechanism

● On read: Very efficient, requires no atomic operations
● On write: replace protected memory with a new one

● Then it waits until no other CPU is reading the old memory
● Before it can free it and/or continue the procedure

● When not deferring any RCU-protected memory:
● CPU is said to be in quiescent state

The issue
● If a CPU stays too long without reporting a quiescent

state, the running process needs to be interrupted so
that CPU can report, and the waiting CPU can get
unstuck.

● That long running task is exactly the case of a guest
vCPU, which is running an RT task on an isolated CPU,
and pooling for network, for example.

The issue
● After the guest is running for some time, and a

quiescent state is required on that CPU:
● Timer interrupt provokes guest_exit()
● Timer handler checks RCU needs

● And then sched-in that cpu’s rcuc/N thread

● After it finishes reporting the quiescent state, it scheds-in
the guest vCPU again

● All this procedure causes a lot of latency into the task

The solution
● Guest running state is considered an extended

quiescent state, as RCU-protected areas are not used
for a long time.

● KVM reports a quiescent state on guest entry, but for some
reason, not on guest exit.

● So, report a quiescent state in guest exit, so every
pending quiescent state reporting request that
happened while the guest ran gets satisfied, and rcuc/N
doesn’t need to run. [2]

The solution
● This solution reduces a lot the reproduction rate, but it

still happens sometimes.
● Reason: Any CPU can request a quiescent state report

between guest_exit and the timer interrupt handler
checking, and it this will cause rcuc/N to wake, since there is
a new quiescent state request.

● The solution on top of the solution is RCU patience[3]:
● A new command-line option that allows the kernel to wait

for a certain time since the oldest valid unreported
quiescent state request before waking up rcuc/N.

Results [4]
● Latency improvement:

● Max latency on guest cyclictest went from 58us → 37us
● Performance gains in RT host

● There were marginal gains in cpu cycles inside the VM
(~0.6%), due to number of guest_exit and time spent inside
the guest balancing themselves

● Performance gains in non-RT host
● Both the average time spend inside the VM and the number

of VM entries raised, causing the VM to have ~4.5% more
cpu cycles available to run it’s workload

Conclusion
● On top of latency improvement, this change could also

achieve almost 5% improvement in cpu time available
for VMs at non-RT kernels, so it may be of interest to
those who sell VM time.

● This solution was merged in mainline as follows:
● RCU/KVM [2] → Merged on 2024-09-06
● RCU Patience [3] → Merged on 2024-07-15

Thanks!

Questions?
Suggestions?

References:
[1] https://www.kernel.org/doc/Documentation/RCU/rcu.txt
[2] Commit 593377036e50 ("kvm: Note an RCU quiescent state on guest exit")
[3] Commit 68d124b09999 ("rcu: Add rcutree.nohz_full_patience_delay to reduce
nohz_full OS jitter")
[4] https://lore.kernel.org/all/ZnPUTGSdF7t0DCwR@LeoBras/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

