Kernel Scalability

LINUX PLUMBERS CONFERENCE | se %30, 2024 Josh Don

01
Introduction

What does this graph represent?

300

200

/S
=

0

2010 2012 2014 2016 2018 2020

2022

2024

Per-socket Logical Processor Count

== |nte] == AMD

300

200

/S
=

0

2010 2012 2014 2016 2018 2020

2022

2024

Scalability Bottlenecks

per-cpu iteration
per-thread/process
iteration

per-cgroup iteration

lock contention

More cpus => iteration takes longer

Includes sources of implicit iteration (ie. wait for IPl broadcast)

Larger machine means more work will be piled on

Larger machine can land more users in a cotenant environment

Lock granularity doesn’t scale with core count

Global locks are particularly bad here

What Can Happen?

My syscall runs a My high priority My machine
bit slower task is suffering had a hard
heavy latency lockup

Benign Catastrophic

Benefits of Scalability

Efficiency Performance Reliability
Fully utilize machine resources Remove bottlenecks that slow Avoid lockups and other
by packing as many tasks as down execution. sources of instability.

possible. Bigger chip = better
perf / TCO.

Scalability Theorem

£ -~ \

Scalability Velocity Upstream
Can it scale to large Can we develop and Can we get it merged
systems? integrate it quickly? upstream?

(Generally) pick any two

02
Case Studies of
Resolved Issues

CFS Bandwidth Throttling

e Bandwidth control limits cgroups to a
fixed cpu quota per period

e An hrtimer goes off every period to
refresh quota and unthrottle all
throttled cpus

| unthrottled | throttled |unthrottled | throttled | unthrottled |

Time

A Closer Look at Quota Refresh

static void distribute_ cfs runtime (struct cfs_bandwidth *cfs b)

{
list for each _entry rcu(cfs_rq, &cfs b->throttled cfs rq,

throttled list) {
struct rq *rq = rq of (cfs_rq);

rq_lock_irgsave (xq) ;
cfs_rqg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)

unthrottle cfs rq(cfs_rq);

rq _unlock_irqrestore(rq);

A Closer Look at Quota Refresh

static void distribute_ cfs runtime (struct cfs_bandwidth *cfs b)

{
list for each _entry rcu(cfs_rq, &cfs b->throttled cfs rq, o O(Cpus)

throttled list) {
struct rq *rq = rq of (cfs_rq);

rq_lock_irgsave (xq) ;
cfs_rqg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)

unthrottle cfs rq(cfs rq); -——— O(cgroups)

rq _unlock_irqrestore(rq);

A Closer Look at Quota Refresh

static void distribute_ cfs runtime (struct cfs_bandwidth *cfs b)

{
list for each entry rcu(cfs_rq, &cfs b->throttled cfs rq, o O(Cpus)

throttled list) {
struct rq *rq = rq of (cfs_rq);
rq_lock_irgsave (xq) ;

cfs_rqg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)

unthrottle cfs rq(cfs rq); -——— O(cgroups)

rq _unlock_irqrestore(rq);

e We're in hrtimer context (ie. hardirg); IRQ are disabled for the duration
e Result was a hard lockup (10+ seconds stuck without running IRQ)

o 256 cpus and O(1000) cgroups in the throttled cgroup hierarchy

A Look at The Solution

static void distribute_ cfs runtime (struct cfs_bandwidth *cfs b)

{
list for each _entry rcu(cfs_rq, &cfs b->throttled cfs rq, o O(cpus)

throttled list) {
struct rq *rq = rq of (cfs_rq);
rq_lock_irgsave (xq) ;
cfs_rqg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)

unthrottle cfs_rq async(cfs_rq); —— 0(1)

rq _unlock_irqrestore(rq);

e Dispatch the unthrottle to the remote cpu, rather than doing it inline, thus sharding

the O(cgroup) work to the entire system

8ad075c2eb1f6: sched: Async unthrottling for cfs bandwidth

A Look at The Solution

static void distribute_ cfs runtime (struct cfs_bandwidth *cfs b)

{
list for each _entry rcu(cfs_rq, &cfs b->throttled cfs rq, o O(Cpus)

throttled list) {
struct rq *rq = rq of (cfs_rq);
rq_lock_irgsave (xq) ;
cfs_rqg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)

unthrottle cfs_rq async(cfs_rq); —— 0(1)

rq _unlock_irqrestore(rq);

Still suffers from O(cpus) in hrtimer context, but more on that later...

getrusage syscall

int main() {
struct rusage usage;

if (getrusage(RUSAGE SELF, &usage) == -1) {
e Returns resource usage information for BEFTORS Getitsege o
return 1;
the current process }

printf("User time: %1d.%@6lds\n"
"System time: %1d.%@61ds\n"
"Max RSS: %1d bytes\n"
"Voluntary context switches: %1ld\n"
"Involuntary context switches: %ld\n",
usage.ru_utime.tv_sec, usage.ru_utime.tv_usec,
usage.ru_stime.tv_sec, usage.ru_stime.tv_usec,
usage.ru_maxrss,
usage.ru_nvcsw,

usage.ru_nivcsw); v

return 0;

A Closer Look at getrusage

void getrusage (struct task_struct *p, int who, struct rusage *r)

{

struct task_struct *t;
lock_task sighand(p)

switch (who) {
case RUSAGE_ SELF:
t = p;
do {
accumulate thread rusage(t, r);
} while each thread(p, t):
break;

}

unlock task sighand(p) ;

A Closer Look at getrusage

void getrusage (struct task_struct *p, int who, struct rusage *r)

{

struct task_struct *t;

lock_task_sighand(p) ¢——— Per process
spinlock

switch (who) {

case RUSAGE_ SELF:

t = p;
do {

accumulate thread rusage(t, r); Ilterate all
} while each thread(p, t); <—— threads of
break;

) the process

unlock task sighand(p) ;

A Closer Look at getrusage

void getrusage (struct task_struct *p, int who, struct rusage *r)

{

struct task_struct *t;

lock_task sighand (p) ¢——— Actually... per process spinlock that spins
with IRQ disabled

switch (who) {

case RUSAGE_ SELF:

t = p;
do {

accumulate thread rusage(t, r); Ilterate all
} while each thread(p, t); <—— threads of
break;

) the process

unlock task sighand(p) ;

What Was the Problem?

t_1 t_2 t_3 tn

— = 7

getrusage l

What Was the Problem?

getrusage

e Threads in a process can call getrusage concurrently, only one can make progress at a time

e Each takes a long time in the critical section due to O(threads) iteration

e user process with O(250k) threads triggered a hard lockup by a userspace bug in which
multiple threads called getrusage at the same time

o Userspace bug, but... this shouldn’t cause a kernel crash

A Look at The Solution

void getrusage (struct task_struct *p, int who, struct rusage *r)

{

struct task_struct *t;

retry: Run locklessly in
read_segbegin or_lock_irgsave (&sig->stats_lock, &seq); <@ -ommon case of

switch (who) { readers only

case RUSAGE_SELF:
t =p;
do {
accumulate thread rusage(t, r);
} while each thread(p, t):
break;
}
if (need_seqretry(&sig->stats_lock, seq)) ({
seq = 1;
goto retry;
}

done_seqretry irqrestore (&sig->stats_lock, seq, flags)

03
CFS Bandwidth Control

Recall the Quota Distribution Handler

static void distribute cfs runtime (struct cfs _bandwidth *cfs b)

{
list _for_ each entry_ rcu(cfs_rq, &cfs_b->throttled cfs_rq, g—-v-v--o O(CpUS)
throttled list) {
struct rq *rq = rq of (cfs_rq);

rq_lock_irgsave (rq) ;
cfs rg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)

unthrottle cfs rq async(cfs_rq); 4 0(1)

rq unlock irqgrestore(rq);

Recall the Quota Distribution Handler

static void distribute cfs runtime (struct cfs _bandwidth *cfs b)

{
list for each entry rcu(cfs_rq, &cfs b->throttled cfs rq,

throttled list) {
struct rq *rq = rq of (cfs_rq);

Could take non-trivial time; O(cgroup) throttling
holds rq lock
cfs rg->runtime remaining += refresh;
if (cfs_rqg->runtime remaining > 0)
unthrottle cfs rq async(cfs_rq);

rq_lock_irgsave(rq); g——

rq unlock irqgrestore(rq);

We're not yet safe from bandwidth distribution

e O(cpus) iteration could be slow
o Worst case, we're back to our hard lockup (unlikely)
m Idea: Shard the timer callback to multiple cpus (complex and unlikely
unnecessary at this point)
o A cfs_rqwe unthrottle could get re-throttled in the same iteration
m Idea: Don't revisit the same cpu more than once in a given iteration (we could
unthrottle cpu X, then cpu X could throttled again before we're finished with the

iteration)

e Wait... what about the O(cgroup) throttling operation?

Throttling Scalability

e Throttle/unthrottle still has an O(cgroup) scalability factor

© walk tg tree from(cfs_rqg->tg, tg_throttle down, tg nop, (void *)rq);

e Done with rq lock held!
e Why do we do this tree walk?
o Some statistics updates
o Increment throttle count of all child cgroups
m Allows O(1) detection of throttled hierarchy on task enqueue, migration, etc.
m Maybe worthwhile to compute throttled hierarchy state lazily? Common case of

enqueue already does an ancestor walk (h_nr running updates, etc.)

Throttling Scalability

e So far, not causing extreme pain, but this is a consistent bottleneck

e Being proactive vs reactive

e Maybe no one else cares that much about scaling CFS bandwidth to this number of cpus and
cgroups?

e Making this scalable will shift the overhead to be more distributed on the time axis, but that might
negatively impact some users

e Increased code complexity

e Should the kernel keep the simplicity and runtime benefits of the current model, or sacrifice

these somewhat to be more scalable?

04
Priority Inversion

Classic Priority Inversion

Priority Inversion vs Scalability

e More threads => more contention over shared resources, longer tails of wait queues
o Particularly with coarse locks like cgroup mutex and mmap lock

o Including more abstract resources like memory bandwidth

e Things are starting to look a little better here...
o Proxy execution to mitigate prio inversion due to locking (mutex only)
o Internal experiments to prioritize execution of threads in kernel context (see Xi Wang’s LPC
talk)
o Per VMA locking

Internal Experiments

kernel mutex wait time P99

e \
- MWM/\M

Mg

\l

\\JNM%WMWW

~50% reduction in kernel lock max wait time

~67% reduction in cgroup_mutex max wait
time

~40x reduction in watchdog panic rate

05
Perf

Uncore management

e Larger CPU = more uncore PMUs
o L3 cache uncore PMU count grows linearly with pcore count
o eg. Granite Rapids with 120 pcores has ~150 uncore PMUs
e Problem: A single CPU per socket is designated to manage uncore PMUs
o Events could also be multiplexed, which requires uncore management rotate events every
millisecond from hrtimer context
e Solvable: Can fix this by sharding uncore management

o On our backlog; on paper doesn’t appear infeasible

Perf tool

e Creating event counters on multiple cpus is bottlenecked by a per-cpu iteration
o Kernel API only installs on a single cpu per call
o Profiling on hundreds of cpus requires iterative sched set_affinity or IPI to create all events
o Solvable: Kernel can expose an API to install on multiple cpus via broadcast

e lan Rogers: adding parallelism is a theme of things to do in the perf tool

Perf tool

e When perf tool starts in profiling mode it has to first look at all mmap entries under /proc in order to
symbolize samples
o Bigger machine = more processes
o Solvable: lan Rogers working on alternative to avoid mmap scan and instead include build ID
+ text offset for each sample.
m Trade-offs; for example, increase each record size by 24 bytes to support build ID =>

better when sampling for an infrequent event

06
Memory Management

Lock Contention

e Lock granularity continues to be a scalability concern, not just with size of memory, but number of cpus
per node
e Examples
o mmap_lock: protects VMA lookup
m per-VMA locking is helping, but still observe multi-second page fault tails waiting on
mmap_lock (possibly due to reader/writer contention)
o LRU lock: protects LRU list for working set
m Asingle LRU lock can protect a lot of memory, depending on length of the list
m List operations are frequent
o Zone lock: protects free pages of each mm zone for page allocation
m Each NUMA node has multiple zones, but still one big lock per zone
o Swap lock: protects swap device files

m Mitigated somewhat by using multiple swap files per machine

Per-cpu structures

e Many structs are allocated per-cpu
o Benefit: lockless access to cpu local struct

o Downside: increased memory overhead

e More nuanced downside: aggregation takes longer on larger machines
o e.g.rstat
m stats tracked per-cpu
m reads from userspace trigger an aggregation that follows a
for each possible cpu() iteration to do the flushing
m userspace doing frequent observations suffers, especially when observing multiple

cgroups, as each must do a separate iteration

07
Other Quick Examples

NOHZ

e Timer migration scans O(cpus)

int get _nohz_ timer target(void)
{
for each domain(cpu, sd) {

for each cpu and(i, sched domain span(sd), hk mask) {
if (cpu == 1)
continue;

if (!idle_cpu(i))
return i;

}

return this_cpu;

NOHZ

e Timer migration scans O(cpus)

int get _nohz_ timer target(void)
{

for each domain(cpu, sd) {

for _each _cpu and(i, sched domain_span(sd), hk_mask) { g———— CPU iteration
if (cpu == i)
continue;

if (lidle cpu(i)) . Lots of remote accesses;
return i; poor cache locality

}

return this_cpu;

NOHZ

e Timer migration scans O(cpus)

int get _nohz_ timer target(void)
{

for each domain(cpu, sd) {

for _each _cpu and(i, sched domain_span(sd), hk_mask) { g———— CPU iteration
if (cpu == i)
continue;

if (lidle cpu(i)) . Lots of remote accesses;
return i; poor cache locality

}

return this_cpu;

Solutions:
e disable sysctl.timer migration
e place a search limit on the loop (something we should probably do in general...)

Slow task death

e KILL'ing a large process can be slow
o We walk all its threads and trigger a wakeup

o Wakeup on a large system might be non-trivial, due to wakeup (select task rq) heuristics

e Simple workaround: short-circuit wakeup selection for dying tasks to pick the last used cpu

Chiplet Architecture

e Larger CPUs tend to have sub-NUMA nodes

o Chiplets are a way to improve scalability in the hardware

e Chiplets create asymmetric architecture

o Split L3 cache

e Increased hardware complexity to support scalability means we also need to make the software
more complex
o Chiplet scheduling is active area of open research
m Soft affinity to a particular chiplet

m When to queue on local chiplet vs spill to a remote chiplet

08
Q&A

