
Confidential + Proprietary

Kernel Scalability

Josh Don

Confidential + Proprietary

Introduction
01

Confidential + Proprietary

What does this graph represent?

Confidential + Proprietary

Per-socket Logical Processor Count

Confidential + Proprietary

Scalability Bottlenecks

per-cpu iteration ● More cpus => iteration takes longer

● Includes sources of implicit iteration (ie. wait for IPI broadcast)

per-thread/process
iteration

● Larger machine means more work will be piled on

per-cgroup iteration ● Larger machine can land more users in a cotenant environment

lock contention ● Lock granularity doesn’t scale with core count

● Global locks are particularly bad here

Confidential + Proprietary

What Can Happen?

My syscall runs a
bit slower

Benign Catastrophic

My high priority
task is suffering
heavy latency

My machine
had a hard
lockup

Confidential + Proprietary

Benefits of Scalability

Efficiency Performance Reliability

Fully utilize machine resources
by packing as many tasks as
possible. Bigger chip = better
perf / TCO.

Remove bottlenecks that slow
down execution.

Avoid lockups and other
sources of instability.

Confidential + Proprietary

Velocity

Can we develop and
integrate it quickly?

Scalability

Can it scale to large
systems?

Upstream

Can we get it merged
upstream?

Scalability Theorem

(Generally) pick any two

Confidential + Proprietary

Case Studies of
Resolved Issues

02

Confidential + Proprietary

● Bandwidth control limits cgroups to a
fixed cpu quota per period

● An hrtimer goes off every period to
refresh quota and unthrottle all
throttled cpus

CFS Bandwidth Throttling

 | unthrottled | throttled | unthrottled | throttled | unthrottled |

 Time

Confidential + Proprietary

A Closer Look at Quota Refresh
static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

Confidential + Proprietary

static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

A Closer Look at Quota Refresh

O(cpus)

O(cgroups)

Confidential + Proprietary

A Closer Look at Quota Refresh

● We’re in hrtimer context (ie. hardirq); IRQ are disabled for the duration

● Result was a hard lockup (10+ seconds stuck without running IRQ)

○ 256 cpus and O(1000) cgroups in the throttled cgroup hierarchy

static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

O(cpus)

O(cgroups)

Confidential + Proprietary

A Look at The Solution

8ad075c2eb1f6: sched: Async unthrottling for cfs bandwidth

static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq_async(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

O(cpus)

O(1)

● Dispatch the unthrottle to the remote cpu, rather than doing it inline, thus sharding

the O(cgroup) work to the entire system

Confidential + Proprietary

A Look at The Solution
8ad075c2eb1f6: sched: Async unthrottling for cfs bandwidth

Still suffers from O(cpus) in hrtimer context, but more on that later…

static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq_async(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

O(cpus)

O(1)

Confidential + Proprietary

● Returns resource usage information for
the current process

getrusage syscall

Confidential + Proprietary

A Closer Look at getrusage

void getrusage(struct task_struct *p, int who, struct rusage *r)
{
 struct task_struct *t;

 lock_task_sighand(p)

 switch (who) {
 case RUSAGE_SELF:
 t = p;
 do {
 accumulate_thread_rusage(t, r);
 } while_each_thread(p, t);
 break;
 }

 unlock_task_sighand(p);
}

Confidential + Proprietary

A Closer Look at getrusage

void getrusage(struct task_struct *p, int who, struct rusage *r)
{
 struct task_struct *t;

 lock_task_sighand(p)

 switch (who) {
 case RUSAGE_SELF:
 t = p;
 do {
 accumulate_thread_rusage(t, r);
 } while_each_thread(p, t);
 break;
 }

 unlock_task_sighand(p);
}

Per process
spinlock

Iterate all
threads of
the process

Confidential + Proprietary

A Closer Look at getrusage

void getrusage(struct task_struct *p, int who, struct rusage *r)
{
 struct task_struct *t;

 lock_task_sighand(p)

 switch (who) {
 case RUSAGE_SELF:
 t = p;
 do {
 accumulate_thread_rusage(t, r);
 } while_each_thread(p, t);
 break;
 }

 unlock_task_sighand(p);
}

Actually… per process spinlock that spins
with IRQ disabled

Iterate all
threads of
the process

Confidential + Proprietary

What Was the Problem?

t_1 t_2 t_3 … t_n

getrusage

Confidential + Proprietary

What Was the Problem?

t_1 t_2 t_3 … t_n

getrusage

● Threads in a process can call getrusage concurrently, only one can make progress at a time

● Each takes a long time in the critical section due to O(threads) iteration

● user process with O(250k) threads triggered a hard lockup by a userspace bug in which

multiple threads called getrusage at the same time

○ Userspace bug, but… this shouldn’t cause a kernel crash

Confidential + Proprietary

A Look at The Solution
void getrusage(struct task_struct *p, int who, struct rusage *r)
{
 struct task_struct *t;

retry:
 read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);

 switch (who) {
 case RUSAGE_SELF:
 t = p;
 do {
 accumulate_thread_rusage(t, r);
 } while_each_thread(p, t);
 break;
 }

 if (need_seqretry(&sig->stats_lock, seq)) {
 seq = 1;
 goto retry;
 }

 done_seqretry_irqrestore(&sig->stats_lock, seq, flags)
}

Run locklessly in
common case of
readers only

Confidential + Proprietary

CFS Bandwidth Control
03

Confidential + Proprietary

Recall the Quota Distribution Handler

static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq_async(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

O(cpus)

O(1)

Confidential + Proprietary

Recall the Quota Distribution Handler

static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,

 throttled_list) {
 struct rq *rq = rq_of(cfs_rq);

 rq_lock_irqsave(rq);

 cfs_rq->runtime_remaining += refresh;
 if (cfs_rq->runtime_remaining > 0)
 unthrottle_cfs_rq_async(cfs_rq);

 rq_unlock_irqrestore(rq);
 }
}

Could take non-trivial time; O(cgroup) throttling
holds rq lock

Confidential + Proprietary

● O(cpus) iteration could be slow

○ Worst case, we’re back to our hard lockup (unlikely)

■ Idea: Shard the timer callback to multiple cpus (complex and unlikely

unnecessary at this point)

○ A cfs_rq we unthrottle could get re-throttled in the same iteration

■ Idea: Don’t revisit the same cpu more than once in a given iteration (we could

unthrottle cpu X, then cpu X could throttled again before we’re finished with the

iteration)

● Wait… what about the O(cgroup) throttling operation?

We’re not yet safe from bandwidth distribution

Confidential + Proprietary

● Throttle/unthrottle still has an O(cgroup) scalability factor

○ walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);

● Done with rq lock held!

● Why do we do this tree walk?

○ Some statistics updates

○ Increment throttle count of all child cgroups

■ Allows O(1) detection of throttled hierarchy on task enqueue, migration, etc.

■ Maybe worthwhile to compute throttled hierarchy state lazily? Common case of

enqueue already does an ancestor walk (h_nr_running updates, etc.)

Throttling Scalability

Confidential + Proprietary

● So far, not causing extreme pain, but this is a consistent bottleneck

● Being proactive vs reactive

● Maybe no one else cares that much about scaling CFS bandwidth to this number of cpus and

cgroups?

● Making this scalable will shift the overhead to be more distributed on the time axis, but that might

negatively impact some users

● Increased code complexity

● Should the kernel keep the simplicity and runtime benefits of the current model, or sacrifice

these somewhat to be more scalable?

Throttling Scalability

Confidential + Proprietary

Priority Inversion
04

Confidential + Proprietary

Classic Priority Inversion

H ML

Confidential + Proprietary

● More threads => more contention over shared resources, longer tails of wait queues

○ Particularly with coarse locks like cgroup_mutex and mmap_lock

○ Including more abstract resources like memory bandwidth

● Things are starting to look a little better here…

○ Proxy execution to mitigate prio inversion due to locking (mutex only)

○ Internal experiments to prioritize execution of threads in kernel context (see Xi Wang’s LPC

talk)

○ Per VMA locking

Priority Inversion vs Scalability

Confidential + Proprietary

Internal Experiments

~50% reduction in kernel lock max wait time

~67% reduction in cgroup_mutex max wait
time

~40x reduction in watchdog panic rate

kernel mutex wait time P99

Confidential + Proprietary

Perf
05

Confidential + Proprietary

● Larger CPU = more uncore PMUs

○ L3 cache uncore PMU count grows linearly with pcore count

○ eg. Granite Rapids with 120 pcores has ~150 uncore PMUs

● Problem: A single CPU per socket is designated to manage uncore PMUs

○ Events could also be multiplexed, which requires uncore management rotate events every

millisecond from hrtimer context

● Solvable: Can fix this by sharding uncore management

○ On our backlog; on paper doesn’t appear infeasible

Uncore management

Confidential + Proprietary

● Creating event counters on multiple cpus is bottlenecked by a per-cpu iteration

○ Kernel API only installs on a single cpu per call

○ Profiling on hundreds of cpus requires iterative sched set_affinity or IPI to create all events

○ Solvable: Kernel can expose an API to install on multiple cpus via broadcast

● Ian Rogers: adding parallelism is a theme of things to do in the perf tool

Perf tool

Confidential + Proprietary

● When perf tool starts in profiling mode it has to first look at all mmap entries under /proc in order to

symbolize samples

○ Bigger machine = more processes

○ Solvable: Ian Rogers working on alternative to avoid mmap scan and instead include build ID

+ text offset for each sample.

■ Trade-offs; for example, increase each record size by 24 bytes to support build ID =>

better when sampling for an infrequent event

Perf tool

Confidential + Proprietary

Memory Management
06

Confidential + Proprietary

● Lock granularity continues to be a scalability concern, not just with size of memory, but number of cpus

per node

● Examples

○ mmap_lock: protects VMA lookup

■ per-VMA locking is helping, but still observe multi-second page fault tails waiting on

mmap_lock (possibly due to reader/writer contention)

○ LRU lock: protects LRU list for working set

■ A single LRU lock can protect a lot of memory, depending on length of the list

■ List operations are frequent

○ Zone lock: protects free pages of each mm zone for page allocation

■ Each NUMA node has multiple zones, but still one big lock per zone

○ Swap lock: protects swap device files

■ Mitigated somewhat by using multiple swap files per machine

Lock Contention

Confidential + Proprietary

● Many structs are allocated per-cpu

○ Benefit: lockless access to cpu local struct

○ Downside: increased memory overhead

● More nuanced downside: aggregation takes longer on larger machines

○ e.g. rstat

■ stats tracked per-cpu

■ reads from userspace trigger an aggregation that follows a

for_each_possible_cpu() iteration to do the flushing

■ userspace doing frequent observations suffers, especially when observing multiple

cgroups, as each must do a separate iteration

Per-cpu structures

Confidential + Proprietary

Other Quick Examples
07

Confidential + Proprietary

● Timer migration scans O(cpus)

NOHZ

int get_nohz_timer_target(void)
{
 for_each_domain(cpu, sd) {
 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 if (cpu == i)
 continue;

 if (!idle_cpu(i))
 return i;
 }
 }

 return this_cpu;
}

Confidential + Proprietary

● Timer migration scans O(cpus)

NOHZ

int get_nohz_timer_target(void)
{
 for_each_domain(cpu, sd) {
 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 if (cpu == i)
 continue;

 if (!idle_cpu(i))
 return i;
 }
 }

 return this_cpu;
}

Lots of remote accesses;
poor cache locality

CPU iteration

Confidential + Proprietary

● Timer migration scans O(cpus)

NOHZ

int get_nohz_timer_target(void)
{
 for_each_domain(cpu, sd) {
 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 if (cpu == i)
 continue;

 if (!idle_cpu(i))
 return i;
 }
 }

 return this_cpu;
}

Lots of remote accesses;
poor cache locality

Solutions:
● disable sysctl.timer_migration
● place a search limit on the loop (something we should probably do in general…)

CPU iteration

Confidential + Proprietary

● KILL’ing a large process can be slow

○ We walk all its threads and trigger a wakeup

○ Wakeup on a large system might be non-trivial, due to wakeup (select_task_rq) heuristics

● Simple workaround: short-circuit wakeup selection for dying tasks to pick the last used cpu

Slow task death

Confidential + Proprietary

● Larger CPUs tend to have sub-NUMA nodes

○ Chiplets are a way to improve scalability in the hardware

● Chiplets create asymmetric architecture

○ Split L3 cache

● Increased hardware complexity to support scalability means we also need to make the software

more complex

○ Chiplet scheduling is active area of open research

■ Soft affinity to a particular chiplet

■ When to queue on local chiplet vs spill to a remote chiplet

Chiplet Architecture

Confidential + Proprietary

Q&A
08

