Kernel Sanitizers Office Hours

Hosted by: Alexander Potapenko (Google); Dmitry Vyukov (Google); Kees Cook (Google);
Marco Elver (Google); Paul McKenney (Meta)

Agenda

1. Kernel Sanitizers Primer
e Kernel Address Sanitizer (KASAN)
e Kernel Memory Sanitizer (KMSAN)
e Kernel Concurrency Sanitizer (KCSAN)
e Undefined Behaviour Sanitizer (UBSAN)
2. Discussion and Questions

Kernel Sanitizers Primer

Dynamic Analysis

e Dynamic program analysis is about analyzing a piece of code “dynamically”:
the analysis observes the program as it is being executed
e Dynamic analysis reports typically point out system errors or failures
o Can rarely deduce the underlying system fault / bug
o Quality of diagnostics often inversely correlated with the performance of a tool

Dynamic Analysis

e Only the state space that was covered during execution is analyzed

Program state space

Dynamic Analysis

source files
/
binary files

Runtime Libraries

Instrumentation
(compiler-inserted)

Executable

runtime

i checks

Undefined Behavior

Why “undefined behavior’?

e C designed for fine-grained control over low-level details, such as how
memory is organized (essential in kernel development)
e Unsafe languages simply say: some well-typed programs are undefined 3%
o Trade-off: simpler type system + higher performance (no dynamic error checking)
e Safe languages with manual memory management hard to design &

implement
o Rustis considered safe in its “safe” subset

Memory Safety Errors

Memory Safety Errors

out of bounds become dangling
Use pointer Use pointer

to write (or free) to read oI

Memory Safety

7 7
{
Modify a Modify Modify a Modify a data Output data
data pointer code ... code pointer ... variable ... variable
VIILA. VILA.
Code Integrity Code Pointer Integrity »

Data Integrity

... to the attacker
V.A.

... to the address of | ... to the attacker Interpret the

specified code shellcode / gadget specified value output data .B.
pe Instruction Set /gadg Address Space P P! A
s 7 P Data Space
Randomization Randomization E
1 Randomization
oS
{ Y
073 o2
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable

i Y Data-flow Integrity

T
02

Execute available
gadgets / functions

Execute injected
shellcode

® 6 6 6 o o

Non-executable Data /
Instruction Set Randomization

Code corruption Control-flow Data-only Information
attack hijack attack attack leak

Memory-safety errors are the root cause of most security attacks [Szekeres et al. Oakland’13]

Out-of-bounds accesses

e Accesses memory beyond the allocated memory
o No bounds checking by default
o Compiler may sometimes warn (if it can infer array size)

e May read random data, or corrupt other kernel state!
o Can be exploited to leak memory, or control kernel in unintended ways!

void print_upper_buggy(const char *str)
{
char buf[10];
strcpy(buf, str); // unchecked strcpy!
for (char *c = buf; *c; ++c)
*c = toupper(*c);
pr_info("%s\n", buf);

10

Heap use-after-free

e Accesses recently unallocated heap memory
o Memory may already have been recycled

e May read random data, or corrupt other kernel state!
o Can be exploited to leak memory, or control kernel in unintended ways!

void print_upper_buggy(const char *str)
{
char *buf = kmalloc(strlen(str), GFP_KERNEL);
if (WARN_ON(!buf)) return;
strcpy(buf, str);
for (char *c = buf; *c; ++c)
*c = toupper(*c);
kfree(buf); // whoops!
pr_info("%s\n", buf); // use-after-free!

11

Stack use-after-return

e Access to memory in invalid stack frame
o Stack memory may already have been reused in the next call

e May read random data, or corrupt other kernel state!
o Can be exploited to leak memory, or control kernel in unintended ways!

const char *strtoupper_buggy(const char *str)
{
char buf[64];
strlcpy(buf, str, sizeof(buf));
for (char *c = buf; *c; ++c)
*c = toupper(*c);
return buf; // return of pointer to stack var!

12

Kernel Address Sanitizer (KASAN)

Detects: out-of-bounds accesses, heap use-after-free, and stack use-after-returns

Usage [docs.kernel.org/dev-tools/kasan.html]:

e Generic (default): CONFIG_KASAN=y

o For debugging and testing kernels
o Not recommended for production kernels!

o Software tags: CONFIG_KASAN=y + CONFIG_KASAN_SW_TAGS=y

o For debugging and testing kernels
o Lower overhead vs. generic, but also not recommended for production kernels!

e Hardware tags: CONFIG_KASAN=y + CONFIG_KASAN_HW _TAGS=y

o Currently requires Arm64 Memory Tagging Extension (MTE)
o Usable in production kernels!

https://docs.kernel.org/dev-tools/kasan.html

Uses of uninitialized memory

e Access memory that has not been initialized

e May read random data or even old data from recycled memory!

o Could be exploited to leak sensitive data!

void hello_tux_buggy(const char *name)
{

char buf[10];

strlcpy(buf, str, sizeof(buf));

if (buf[0] == 't' && buf[1l] == 'u' && buf[2] == 'x'

printf("hello world\n");

14

Kernel Memory Sanitizer (KMSAN)

Detects: uses-of-uninit, kernel-user-space information leaks

Usage [docs.kernel.org/dev-tools/kmsan.html]:

e CONFIG_KMSAN=y
e For debugging and testing kernels
e Not recommended for production kernels!

¢ To mitigate stack uninit bugs in production, use:
CONFIG_INIT _STACK ALL ZERO=y (-trivial-auto-var-init=zero)

https://docs.kernel.org/dev-tools/kmsan.html

Data Races

Data Races in the Linux Kernel

. Thread © Thread 1
Data races (X) occur if:
x o= X+ 1; X = Oxfofo;
e Concurrent conflicting accesses
. . = X+ 1; , oxfefo);
o they conflict if they access X|--x HRITE_ONCECe, oxrore)
the same location and at _ READONCE(x) + 15 | x - exfofe;
least one is a write, ...
e and at least one is a plain access. X | - = READONCEGO + 1 X
X = 0xffoo; X = Oxff;
o | -+ = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xfofo);

o/ | WRITE_ONCE(x, exffee);

WRITE_ONCE(x, Oxff);

Kernel Concurrency Sanitizer (KCSAN)

Usage [docs.kernel.org/dev-tools/kcsan.html]:

CONFIG_KCSAN=y
For debugging and testing kernel
Not recommended for production kernels!

Suggested config: CONFIG_KCSAN_ STRICT=y (since 5.17)
o "Strict" LKMM rules (but as of 6.11 still noisy)
o Includes weak memory modeling (detect missing memory barriers)

http://docs.kernel.org/dev-tools/kcsan.html

Other Types of Undefined Behavior

“Undefined” Behaviour Sanitizer: CONFIG_UBSAN=y

Behavioral toggle:
e Trap instead of warning: CONFIG_UBSAN_TRAP=y
Production ready:

e Detect out of range shifts: CONFIG_UBSAN_SHIFT=y
e Detect out of bounds array indexes: CONFIG_UBSAN_BOUNDS=y

Pedantic:

e Non-boolean type used as bool: CONFIG_UBSAN_BOOL=y
e Value assigned to enum not in enum declaration: CONFIG_UBSAN_ENUM=y

Under development:

e Semantic Fault, arithmetic wrap-around: CONFIG_UBSAN_INTEGER WRAP=y

Trap instead of warning: UBSAN_ TRAP=y

For the various individual tests under the UBSAN prefix, the TRAP setting
determines how the kernel should behave when detecting an issue. Normally, a
warning with details is reported, and execution continues without correcting the
issue (but the kernel image is about 5% larger from all the text and handling):

UBSAN: array-index-out-of-bounds in drivers/gpu/drm/v3d/v3d_sched.c:320:3
index 7 is out of range for type ' u32 [7]'

Under UBSAN_TRAP=y, a much more terse BUG is reported, and the thread is
terminated:

Internal error: UBSAN: shift out of bounds: 00000000f2005514 [#1] PREEMPT SMP

See warn_limit sysctl for a more flexible way to turn WARN into BUG

https://docs.kernel.org/admin-guide/sysctl/kernel.html#warn-limit

Detect out of range shifts: UBSAN_SHIFT=y

int negative = -1;
ulé bit field = ...;

use_some_bits(bit field << negative); // catch “negative” shift

int has_sign = INT_MAX;
use_some_bits(has_sign << 4); // catch shift of signed bit

https://qit.kernel.ora/pub/scm/linux/kernel/qit/torvalds/linux.qit/log/?at=grep&qg=shift-out-of-bounds
110 fixes in 5 years

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds

Detect out of bounds array indexes: UBSAN_BOUNDS=y

int array[16];
int index = 16;

do_something(array[index]); // catch index outside of [©..15]

struct foo {
int num_bars;
struct bar[] _ counted by(num_bars);
} *p = kmalloc(struct _size(p, bar, 8), GFP_KERNEL);

do_something(p->array[index]); // catch index outside of [@..(p->num_bars-1)]

https://qit.kernel.ora/pub/scm/linux/kernel/qit/torvalds/linux.qit/loa/?gt=agrep&qg=shift-out-of-bounds

93 fixes in 5 years
Depends on the kernel's default use of -fstrict-flex-arrays=3 and the hundreds of refactoring patches
to move from old array[1]/array[0] style “fake” flexible arrays to real flexible arrays, and related changes.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds

Semantic Faults

Semantic Faults

e Faults that don’t cause “undefined behavior”, but still result in system errors
e System deviates from its intended behavior
e Who defines intended behavior?

o Formal specification, reference implementation, documentation, manual

o Worst case: not written down, but in programmer’s head

e Much harder to detect
o Tests
o Assertions
o Defensive programming style
O

UBSAN_INTEGER WRAP=y Detect wrapping arithmetic

e Technically working ...

o GCC & Clang: -fsanitize={signed-integer-overflow, pointer-overflow}
o Clang: has; GCC: Needed: -fsanitize=unsigned-integer-overflow
e ... but there are some significant behavioral caveats related to -fwrapv and

-fwrapv-pointer (enabled via kernel’s use of -fno-strict-overflow)
o “It's not an undefined behavior to wrap around.”
o Clang: 19+; GCC: Needed
e For the Linux kernel, we need "idiom exclusions" to avoid instrumenting cases

where wrap-around is either already checked, or is not part of program flow:

o if (var + offset < var)
o while (var-)
o -1UL, -2UL, ..
o Clang: 19+; GCC: Needed

e Type filtering support allows instrumentation to be toggled for specific types
o Clang: 20?7; GCC: Needed

e Add annotations in kernel for unexpected wrap-around types (size_t first)
o Clang: 20?7; GCC: Needed

https://github.com/llvm/llvm-project/commit/81b4b89197a6be5f19f907b558540bb3cb70f064
https://lore.kernel.org/lkml/202405081949.0565810E46@keescook/
https://github.com/llvm/llvm-project/commit/295fe0bd438209831071ffbacf003c4941f31b90
https://github.com/llvm/llvm-project/pull/107332
https://github.com/llvm/llvm-project/pull/86618

Concurrency bugs that are not data races

Thread ©

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

27

Concurrency bugs that are not data races

Thread © Thread 1
spin_lock(&update_foo lock); /* update_foo_lock does not
/* Careful! There should be no other need to be held! */
writers to shared_foo! Readers ok. */ ... = READ_ONCE(shared_foo0);

WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

Concurrency bugs that are not data races

Thread ©

Thread 1

Thread 2

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared_foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

/* update_foo_lock does not
need to be held! */
. = READ_ONCE(shared_fo0);

/* Bug! */
WRITE_ONCE(shared foo, 42);

29

Concurrency bugs that are not data races

Thread © Thread 1 Thread 2
spin_lock(&update_foo lock); /* update_foo_lock does not H—Bugt—=/
need to be held! */ WRITEONEE(shared—foo,—42)+

/* No other writers to shared foo. */
ASSERT_EXCLUSIVE_WRITER(shared_foo);
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

. = READ_ONCE(shared_fo0);

30

How KCSAN can help find more bugs

e ASSERT_EXCLUSIVE family of macros:
o Specify properties of concurrent code, where bugs are not normal data races.

concurrent writes concurrent reads

ASSERT_EXCLUSIVE_WRITER(var)

ASSERT_EXCLUSIVE_WRITER_SCOPED(var) X v

ASSERT_EXCLUSIVE_ACCESS(var)
ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)

ASSERT_EXCLUSIVE_BITS(var, mask) ~maskv/ mask X (4

Agenda

1. Kernel Sanitizers Primer
e Kernel Address Sanitizer (KASAN)
e Kernel Memory Sanitizer (KMSAN)
e Kernel Concurrency Sanitizer (KCSAN)
e Undefined Behaviour Sanitizer (UBSAN)
2. Discussion and Questions

Discussion and Questions

e Share your experience. Have sanitizers been helpful, not so helpful?
e Rust and kernel sanitizers?

e Fixing data races?
[

Bonus Material

Data Races

Data Races

e C-language and compilers evolved oblivious to concurrency

e Optimizing compilers are becoming more creative

load tearing,

store tearing,

load fusing,

store fusing, |

code reordering,)\ Need to tell compiler about concurrent code
invented loads,

invented stores,

... and more!

O O O O O O o o

L "Who's afraid of a big bad optimizing compiler?", LWN 2019. URL: https:/lwn.net/Articles/793253/

https://lwn.net/Articles/793253/

Data Races

Defined via language's memory consistency model:

e (C-language and compilers no longer oblivious to concurrency:

o C11 introduced memory model: "data races cause undefined behaviour"
o Not Linux's model!

e Linux has its own memory model, giving semantics to concurrent code
o Linux Kernel Memory Consistency Model (LKMM)
o Implemented by relying on parts of the C standard, the two C implementations (GCC &
Clang/LLVM), architecture-specific code, and also coding guidelines (along with some luck that
none of the supported C compilers "miscompile" our concurrent code)

Data Races

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture.
— Avoid having to reason "Is this data race benign?"

2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
— E.g. failing to synchronize accesses using spinlocks, mutexes, RCU, etc.
3. Prevent bugs, and countless hours debugging elusive race conditions!

Data Races in the Linux Kernel

. Thread © Thread 1
Data races (X) occur if:
x o= X+ 1; X = Oxfofo;
e Concurrent conflicting accesses
. . = X+ 1; , oxfefo);
o they conflict if they access X|--x HRITE_ONCECe, oxrore)
the same location and at _ READONCE(x) + 15 | x - exfofe;
least one is a write, ...
e and at least one is a plain access. X | - = READONCEGO + 1 X
X = 0xffoo; X = Oxff;
o | -+ = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xfofo);

o/ | WRITE_ONCE(x, exffee);

WRITE_ONCE(x, Oxff);

Intentional Data Races

e The Linux kernel says that data races do not result in undefined behaviour of
the whole kernel

e Locally "undefined" behaviour: where code still operates correctly even with
potentially random data, data races are tolerated (truly "benign" data races)

e Mark such data races with "data_race(..data-racy expression ..)"
o Helps tooling understand they are intentional
o Document intent (e.g. debugging-only checks)

For more guidance: tools/memory-model/Documentation/access-marking.txt

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt

