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Agenda

1. Kernel Sanitizers Primer
e Kernel Address Sanitizer (KASAN)
e Kernel Memory Sanitizer (KMSAN)
e Kernel Concurrency Sanitizer (KCSAN)
e Undefined Behaviour Sanitizer (UBSAN)
2. Discussion and Questions



Kernel Sanitizers Primer



Dynamic Analysis

e Dynamic program analysis is about analyzing a piece of code “dynamically”:
the analysis observes the program as it is being executed
e Dynamic analysis reports typically point out system errors or failures
o Can rarely deduce the underlying system fault / bug
o Quality of diagnostics often inversely correlated with the performance of a tool



Dynamic Analysis

e Only the state space that was covered during execution is analyzed

Program state space
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Undefined Behavior

Why “undefined behavior’?

e C designed for fine-grained control over low-level details, such as how
memory is organized (essential in kernel development)
e Unsafe languages simply say: some well-typed programs are undefined 3%
o Trade-off: simpler type system + higher performance (no dynamic error checking)
e Safe languages with manual memory management hard to design &

implement
o Rustis considered safe in its “safe” subset



Memory Safety Errors



Memory Safety Errors
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Memory-safety errors are the root cause of most security attacks [Szekeres et al. Oakland’13]




Out-of-bounds accesses

e Accesses memory beyond the allocated memory
o No bounds checking by default
o Compiler may sometimes warn (if it can infer array size)

e May read random data, or corrupt other kernel state!
o Can be exploited to leak memory, or control kernel in unintended ways!

void print_upper_buggy(const char *str)
{
char buf[10];
strcpy(buf, str); // unchecked strcpy!
for (char *c = buf; *c; ++c)
*c = toupper(*c);
pr_info("%s\n", buf);
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Heap use-after-free

e Accesses recently unallocated heap memory
o Memory may already have been recycled

e May read random data, or corrupt other kernel state!
o Can be exploited to leak memory, or control kernel in unintended ways!

void print_upper_buggy(const char *str)
{
char *buf = kmalloc(strlen(str), GFP_KERNEL);
if (WARN_ON(!buf)) return;
strcpy(buf, str);
for (char *c = buf; *c; ++c)
*c = toupper(*c);
kfree(buf); // whoops!
pr_info("%s\n", buf); // use-after-free!
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Stack use-after-return

e Access to memory in invalid stack frame
o Stack memory may already have been reused in the next call

e May read random data, or corrupt other kernel state!
o Can be exploited to leak memory, or control kernel in unintended ways!

const char *strtoupper_buggy(const char *str)
{
char buf[64];
strlcpy(buf, str, sizeof(buf));
for (char *c = buf; *c; ++c)
*c = toupper(*c);
return buf; // return of pointer to stack var!
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Kernel Address Sanitizer (KASAN)

Detects: out-of-bounds accesses, heap use-after-free, and stack use-after-returns

Usage [docs.kernel.org/dev-tools/kasan.html]:

e Generic (default): CONFIG_KASAN=y

o For debugging and testing kernels
o  Not recommended for production kernels!

o Software tags: CONFIG_KASAN=y + CONFIG_KASAN_SW_TAGS=y

o For debugging and testing kernels
o Lower overhead vs. generic, but also not recommended for production kernels!

e Hardware tags: CONFIG_KASAN=y + CONFIG_KASAN_HW _TAGS=y

o  Currently requires Arm64 Memory Tagging Extension (MTE)
o Usable in production kernels!


https://docs.kernel.org/dev-tools/kasan.html

Uses of uninitialized memory

e Access memory that has not been initialized

e May read random data or even old data from recycled memory!

o Could be exploited to leak sensitive data!

void hello_tux_buggy(const char *name)
{

char buf[10];

strlcpy(buf, str, sizeof(buf));

if (buf[0] == 't' && buf[1l] == 'u' && buf[2] == 'x'

printf("hello world\n");

14



Kernel Memory Sanitizer (KMSAN)

Detects: uses-of-uninit, kernel-user-space information leaks

Usage [docs.kernel.org/dev-tools/kmsan.html]:

e CONFIG_KMSAN=y
e For debugging and testing kernels
e Not recommended for production kernels!

¢ To mitigate stack uninit bugs in production, use:
CONFIG_INIT _STACK ALL ZERO=y (-trivial-auto-var-init=zero)



https://docs.kernel.org/dev-tools/kmsan.html

Data Races



Data Races in the Linux Kernel

. Thread © Thread 1
Data races (X ) occur if:
x o= X+ 1; X = Oxfofo;
e Concurrent conflicting accesses
. . = X+ 1; , oxfefo);
o they conflict if they access X|--x HRITE_ONCECe, oxrore)
the same location and at _ READONCE(x) + 15 | x - exfofe;
least one is a write, ...
e and at least one is a plain access. X | - = READONCEGO + 1 X
X = 0xffoo; X = Oxff;
o | -+ = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xfofo);

o/ | WRITE_ONCE(x, exffee);

WRITE_ONCE(x, Oxff);




Kernel Concurrency Sanitizer (KCSAN)

Usage [docs.kernel.org/dev-tools/kcsan.html]:

CONFIG_KCSAN=y
For debugging and testing kernel
Not recommended for production kernels!

Suggested config: CONFIG_KCSAN_ STRICT=y (since 5.17)
o "Strict" LKMM rules (but as of 6.11 still noisy)
o Includes weak memory modeling (detect missing memory barriers)


http://docs.kernel.org/dev-tools/kcsan.html

Other Types of Undefined Behavior



“Undefined” Behaviour Sanitizer: CONFIG_UBSAN=y

Behavioral toggle:
e Trap instead of warning: CONFIG_UBSAN_TRAP=y
Production ready:

e Detect out of range shifts: CONFIG_UBSAN_SHIFT=y
e Detect out of bounds array indexes: CONFIG_UBSAN_BOUNDS=y

Pedantic:

e Non-boolean type used as bool: CONFIG_UBSAN_BOOL=y
e Value assigned to enum not in enum declaration: CONFIG_UBSAN_ENUM=y

Under development:

e Semantic Fault, arithmetic wrap-around: CONFIG_UBSAN_INTEGER WRAP=y



Trap instead of warning: UBSAN_ TRAP=y

For the various individual tests under the UBSAN prefix, the TRAP setting
determines how the kernel should behave when detecting an issue. Normally, a
warning with details is reported, and execution continues without correcting the
issue (but the kernel image is about 5% larger from all the text and handling):

UBSAN: array-index-out-of-bounds in drivers/gpu/drm/v3d/v3d_sched.c:320:3
index 7 is out of range for type ' u32 [7]'

Under UBSAN_TRAP=y, a much more terse BUG is reported, and the thread is
terminated:

Internal error: UBSAN: shift out of bounds: 00000000f2005514 [#1] PREEMPT SMP

See warn_limit sysctl for a more flexible way to turn WARN into BUG



https://docs.kernel.org/admin-guide/sysctl/kernel.html#warn-limit

Detect out of range shifts: UBSAN_SHIFT=y

int negative = -1;
ulé bit field = ...;

use_some_bits(bit field << negative); // catch “negative” shift

int has_sign = INT_MAX;
use_some_bits(has_sign << 4); // catch shift of signed bit

https://qit.kernel.ora/pub/scm/linux/kernel/qit/torvalds/linux.qit/log/?at=grep&qg=shift-out-of-bounds
110 fixes in 5 years



https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds

Detect out of bounds array indexes: UBSAN_BOUNDS=y

int array[16];
int index = 16;

do_something(array[index]); // catch index outside of [©..15]

struct foo {
int num_bars;
struct bar[] _ counted by(num_bars);
} *p = kmalloc(struct _size(p, bar, 8), GFP_KERNEL);

do_something(p->array[index]); // catch index outside of [@..(p->num_bars-1)]

https://qit.kernel.ora/pub/scm/linux/kernel/qit/torvalds/linux.qit/loa/?gt=agrep&qg=shift-out-of-bounds

93 fixes in 5 years
Depends on the kernel's default use of -fstrict-flex-arrays=3 and the hundreds of refactoring patches
to move from old array[1]/array[0] style “fake” flexible arrays to real flexible arrays, and related changes.



https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds

Semantic Faults



Semantic Faults

e Faults that don’t cause “undefined behavior”, but still result in system errors
e System deviates from its intended behavior
e Who defines intended behavior?

o Formal specification, reference implementation, documentation, manual

o Worst case: not written down, but in programmer’s head

e Much harder to detect
o Tests
o Assertions
o Defensive programming style
O



UBSAN_INTEGER WRAP=y Detect wrapping arithmetic

e Technically working ...

o GCC & Clang: -fsanitize={signed-integer-overflow, pointer-overflow}
o Clang: has; GCC: Needed: -fsanitize=unsigned-integer-overflow
e ... but there are some significant behavioral caveats related to -fwrapv and

-fwrapv-pointer (enabled via kernel’s use of -fno-strict-overflow)
o “It's not an undefined behavior to wrap around.”
o Clang: 19+; GCC: Needed
e For the Linux kernel, we need "idiom exclusions" to avoid instrumenting cases

where wrap-around is either already checked, or is not part of program flow:

o if (var + offset < var)
o while (var-)
o -1UL, -2UL, ..
o Clang: 19+; GCC: Needed

e Type filtering support allows instrumentation to be toggled for specific types
o Clang: 20?7; GCC: Needed

e Add annotations in kernel for unexpected wrap-around types (size_t first)
o Clang: 20?7; GCC: Needed


https://github.com/llvm/llvm-project/commit/81b4b89197a6be5f19f907b558540bb3cb70f064
https://lore.kernel.org/lkml/202405081949.0565810E46@keescook/
https://github.com/llvm/llvm-project/commit/295fe0bd438209831071ffbacf003c4941f31b90
https://github.com/llvm/llvm-project/pull/107332
https://github.com/llvm/llvm-project/pull/86618

Concurrency bugs that are not data races

Thread ©

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);
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Concurrency bugs that are not data races

Thread © Thread 1
spin_lock(&update_foo lock); /* update_foo_lock does not
/* Careful! There should be no other need to be held! */
writers to shared_foo! Readers ok. */ ... = READ_ONCE(shared_foo0);

WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);




Concurrency bugs that are not data races

Thread ©

Thread 1

Thread 2

spin_lock(&update_foo lock);

/* Careful! There should be no other
writers to shared_foo! Readers ok. */
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

/* update_foo_lock does not
need to be held! */
. = READ_ONCE(shared_fo0);

/* Bug! */
WRITE_ONCE(shared foo, 42);
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Concurrency bugs that are not data races

Thread © Thread 1 Thread 2
spin_lock(&update_foo lock); /* update_foo_lock does not H—Bugt—=/
need to be held! */ WRITEONEE(shared—foo,—42 )+

/* No other writers to shared foo. */
ASSERT_EXCLUSIVE_WRITER(shared_foo);
WRITE_ONCE(shared_foo, ...);
spin_unlock(&update_foo lock);

. = READ_ONCE(shared_fo0);
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How KCSAN can help find more bugs

e ASSERT_EXCLUSIVE family of macros:
o  Specify properties of concurrent code, where bugs are not normal data races.

concurrent writes concurrent reads

ASSERT_EXCLUSIVE_WRITER(var)

ASSERT_EXCLUSIVE_WRITER_SCOPED(var) X v

ASSERT_EXCLUSIVE_ACCESS(var)
ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)

ASSERT_EXCLUSIVE_BITS(var, mask) ~maskv/ mask X (4
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Discussion and Questions

e Share your experience. Have sanitizers been helpful, not so helpful?
e Rust and kernel sanitizers?

e Fixing data races?
[



Bonus Material



Data Races



Data Races

e C-language and compilers evolved oblivious to concurrency

e Optimizing compilers are becoming more creative

load tearing,

store tearing,

load fusing,

store fusing, |

code reordering, )\ Need to tell compiler about concurrent code
invented loads,

invented stores,

... and more!

O O O O O O o o

L "Who's afraid of a big bad optimizing compiler?", LWN 2019. URL: https:/lwn.net/Articles/793253/



https://lwn.net/Articles/793253/

Data Races

Defined via language's memory consistency model:

e (C-language and compilers no longer oblivious to concurrency:

o C11 introduced memory model: "data races cause undefined behaviour"
o Not Linux's model!

e Linux has its own memory model, giving semantics to concurrent code
o Linux Kernel Memory Consistency Model (LKMM)
o Implemented by relying on parts of the C standard, the two C implementations (GCC &
Clang/LLVM), architecture-specific code, and also coding guidelines (along with some luck that
none of the supported C compilers "miscompile" our concurrent code)



Data Races

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture.
— Avoid having to reason "Is this data race benign?"

2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
— E.g. failing to synchronize accesses using spinlocks, mutexes, RCU, etc.
3. Prevent bugs, and countless hours debugging elusive race conditions!



Data Races in the Linux Kernel

. Thread © Thread 1
Data races (X ) occur if:
x o= X+ 1; X = Oxfofo;
e Concurrent conflicting accesses
. . = X+ 1; , oxfefo);
o they conflict if they access X|--x HRITE_ONCECe, oxrore)
the same location and at _ READONCE(x) + 15 | x - exfofe;
least one is a write, ...
e and at least one is a plain access. X | - = READONCEGO + 1 X
X = 0xffoo; X = Oxff;
o | -+ = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xfofo);

o/ | WRITE_ONCE(x, exffee);

WRITE_ONCE(x, Oxff);




Intentional Data Races

e The Linux kernel says that data races do not result in undefined behaviour of
the whole kernel

e Locally "undefined" behaviour: where code still operates correctly even with
potentially random data, data races are tolerated (truly "benign" data races)

e Mark such data races with "data_race(..data-racy expression ..)"
o Helps tooling understand they are intentional
o Document intent (e.g. debugging-only checks)

For more guidance: tools/memory-model/Documentation/access-marking.txt



https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt

