Accelerating ML with mainline

Linux Plumbers 2024 - Vienna

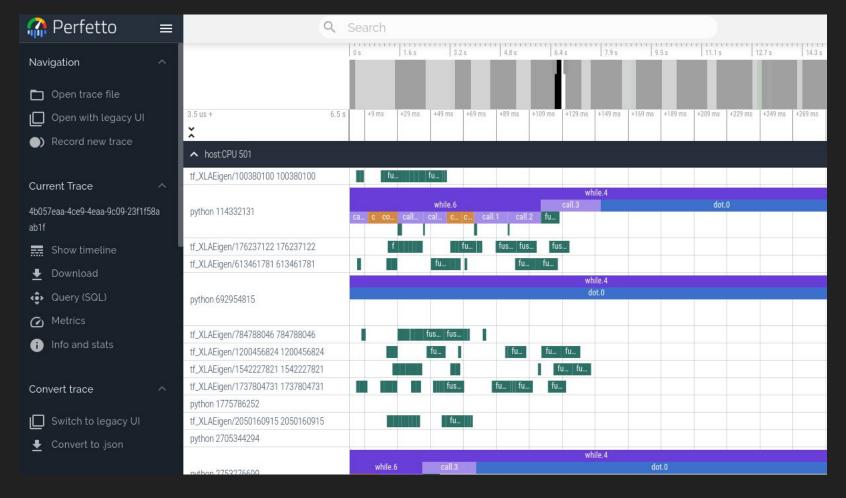
What is stopping vendors from mainlining their drivers?

- NXP tried to upstream a driver for the Ethos-U NPU, gave up on v1
- Amlogic tested the waters, balked off at the userspace requirement
- Samsung submitted a driver for their Trinity NPU, but gave up at v2
- Baylibre submitted a driver for Mediatek's APU, balked off at the userspace requirement
- Arm China started upstreaming a kernel driver for their Zhouyi NPU driver, gave up on v1
- ITRI tried to upstream a kernel driver for their NVDLA derivative
- Probably most other SoC and IP vendors also wish they had a kernel driver in mainline, but haven't found a way so far to do it.

How can we help vendors to mainline their drivers?

- Are there any blockers on the technical side?
- Or is it that they just don't know how to do it?
- Or they haven't been able to agree on releasing the userspace portion of the driver?

How close are we to having a common userspace API?


- GPU drivers have OpenGL and Vulkan
- Compute has OpenCL
- Application developers use ML accelerators via:
 - TensorFlow (Lite)
 - PyTorch/Executorch
 - ONNX
 - o TVM
 - Vendor-specific runtimes, after having converted a model from one of the above frameworks
- OpenXLA, MLIR, IREE, ...
- What can we do to further this goal?

Automated testing

- DRM CI and KernelCI exist today
- Would be good to have a common test suite
- This is probably dependent on a common userspace API

Shared userspace infrastructure

- Compiler
 - MLIR to NIR pass
 - Shared compiler passes
 - Per-channel quantization to per-tensor
 - Signed to unsigned
 - Fuse activations
 - Unstride convolutions
 - Depthwise to normal convolutions
- Execution runtime
 - Resource management
 - Synchronization
- Virtualization.
- Performance tools (Perfetto, ...)

Firmware-mediated IP

- Quite a few out there:
 - Texas Instruments
 - o Arm
 - Cadence
 - Huawei
 - Samsung
 - o Intel
 - 0 ...
- Could these drivers share a single codebase for their firmware?

Interoperability

- Multimedia pipelines:
 - Camera/ISP
 - GPU
 - Compute
 - Machine learning
 - Video codec
- Cooperative execution by graph partitioning:
 - CPU
 - o GPU
 - Accelerator

Standing issues in DRM infrastructure

- cgroups
 - Core mask
 - o Internal memory allocation
- GPU scheduler
- GEM.
- DMABuf
- DMA fences