
Wattson
Saravana Kannan (Google)

Samuel Wu (Google)
wattson-external@google.com

Status quo: Performance evaluation

Hardware setup is easy:
● Just the development device
● Can scale to a test lab

Easy to measure:
● 100s of benchmarks to choose from

Fairly Repeatable:
● Main challenge is thermal throttling

Attribution & measurement granularity:
● Tracing makes it easy to attribute

Status quo: Power evaluation

Hardware setup is NOT easy:
● Custom solution per board
● Costs $ - $$$
● Can be finicky to set up
● Scaling to a lab has a lot of maintenance/overhead

Hard to measure:
● No common benchmark or tool
● Remote setups might not be possible/hard

Not very repeatable:
● Manufacturing differences/binning
● Measurement hardware calibration errors
● Thermal impact even without throttling

Attribution & measurement granularity:
● At best, per power rail attribution over the entire test
● At worst, only at battery level over the entire test

Wattson:

A trace based CPU
power evaluation tool

- Leverages kernel’s ftrace
- Keeps it low overhead

- % change in power
- e.g. A/B testing

Power estimation components

CPU power curves

Little CPU’s power volume

lower higher

Kernel vs hardware idle exit times

IdleCPU state Active Idle

Thread ACPU threads

IdleCPU state Active Idle

Thread ACPU threads

Additional idle exit time added by Wattson

Time

Build Baseline RCU_LAZY HZ_1000 RCU_LAZY + HZ_1000

Average 109 mW 102 mW 125 mW 113 mW

Estimated CPUSS power over 100 BouncyBall runs

actual change in power

+12.4%

estimated change in power
for: HZ_1000

+13.4%

actual change in power

-6.8%

estimated change in power
for: RCU_LAZY

-6.8%

actual change in power

+4.0%

estimated change in power
for: RCU_LAZY + HZ_1000

+3.3%

*n=20

Wattson vs ground truth: BouncyBall 10s run

Start of
Perfetto trace

Test init

Test start
Wattson start marker*

Test stop
Wattson stop marker*

Test teardownTest’s window of interest

Inserting markers:
echo 'I|0|wattson_start' >/sys/kernel/tracing/trace_marker
echo 'I|0|wattson_stop' >/sys/kernel/tracing/trace_marker

End of
Perfetto trace

Collecting a Perfetto trace for Wattson

Using Wattson

Get Wattson estimates
• GUI

https://ui.perfetto.dev/

• Command line
For getting thread level power attribution in JSON format
trace_processor --run-metrics wattson_markers_threads output_trace.pb

For getting CPUSS estimates in JSON format
trace_processor --run-metrics wattson_markers_rails output_trace.pb

https://ui.perfetto.dev/

Enable Wattson in the perfetto UI

Enable Wattson in UI
a. Navigate to https://ui.perfetto.dev/
b. Click on Flags tab
c. Enable the Wattson plugin

https://ui.perfetto.dev/

Power estimate tracks

“Wattson tracks” in the Perfetto UI
displays power per CPU over time

RCU_LAZY: shows idle power improvements
Baseline build

RCU_LAZY build

RCU_LAZY: Even validate through rcu_preempt
Baseline build

RCU_LAZY build

Easy to identify bad runs
Good run: 1117 mWs

Bad run: 2908 mWs

Command line: Wattson metrics

Summarizes energy/power estimates
for period of interest in the trace:

• Per thread estimate
• Per (virtual) power rail estimate

How to use Wattson for kernel development?

Hardware support:
• Pixel 6
• Open to adding your SoC of choice if you provide the power curves

Suggested workloads:
• Android

• BouncyBall has been a good analog for Android apps
• Linux

• Pick a workload that’s more real world and has some CPU idle time
• Don’t use any benchmark that maxes out CPU frequency
• Pick one that’s repeatable in the amount of work that’s done

Getting started on Perfetto:

Excellent Quickstart guide by John:
https://gist.github.com/johnstultz-work/0ec4974e0929c4707bfd89c876ae4735

Perfetto for device:
• Android: Comes preinstalled.
• Or for a static Linux binary (called tracebox):

• curl -O https://raw.githubusercontent.com/google/perfetto/main/tools/tracebox

Trace processor for your PC:
• Android: Built as part of any android build
• Can also download from: https://github.com/google/perfetto/releases
• Or for a static Linux binary:

• curl -O https://raw.githubusercontent.com/google/perfetto/main/tools/trace_processor
• chmod +x trace_processor

https://gist.github.com/johnstultz-work/0ec4974e0929c4707bfd89c876ae4735
https://github.com/google/perfetto/releases
https://raw.githubusercontent.com/google/perfetto/main/tools/trace_processor

Collect Perfetto trace for Wattson: Android

// Collect Perfetto trace on device
perfetto --txt -c min_wattson.cfg -o output_trace.pb

// Insert Wattson markers around the period of interest
echo 'I|0|wattson_start' >/sys/kernel/tracing/trace_marker
<use case runs>
echo 'I|0|wattson_stop' >/sys/kernel/tracing/trace_marker

// Flush Perfetto trace to buffer
killall -w perfetto

Collect Perfetto trace for Wattson: Linux

// Collect Perfetto trace on device
tracebox --txt -c min_wattson.cfg -o output_trace.pb

// Insert Wattson markers around the period of interest
echo 'I|0|wattson_start' >/sys/kernel/tracing/trace_marker
<use case runs>
echo 'I|0|wattson_stop' >/sys/kernel/tracing/trace_marker

// Flush Perfetto trace to buffer
killall -w tracebox

Wattson via cmdline

// Post process Perfetto trace via cmdline (or upload trace to https://ui.perfetto.dev/ for GUI)
curl -O https://raw.githubusercontent.com/google/perfetto/main/tools/trace_processor
chmod +x trace_processor

// For getting thread level power attribution
trace_processor --run-metrics wattson_markers_threads output_trace.pb

// For getting CPUSS estimates
trace_processor --run-metrics wattson_markers_rails output_trace.pb

https://ui.perfetto.dev/
https://raw.githubusercontent.com/google/perfetto/main/tools/trace_processor

min_wattson.cfg - Minimum config for Wattson
write_into_file: true
flush_period_ms: 30000
file_write_period_ms: 30000
buffers: {
 size_kb: 200000
 fill_policy: DISCARD
}
buffers: {
 size_kb: 2048
 fill_policy: DISCARD
}
data_sources: {
 config {
 name: "linux.process_stats"
 target_buffer: 1
 process_stats_config {
 scan_all_processes_on_start: true
 }
 }
}
data_sources: {
 config {
 name: "linux.ftrace"
 ftrace_config {
 ftrace_events: "ftrace/print"
 ftrace_events: "power/cpu_frequency"
 ftrace_events: "power/cpu_idle"
 ftrace_events: "power/suspend_resume"
 }
 }
}

Discussion

Do you find Wattson useful?

What will encourage you to integrate Wattson into your development workflow?

Can we start using Wattson to check power impact of major sched/DVFS changes?

What additional capabilities would you like to see added to Wattson?

Thank you!
Contact:

wattson-external@google.com

