
Integrating kas-alias into kernel build: Overcoming
Challenges with Non-Invasive Modifications

Alessandro Carminati
Principal Software Engineer

What’s kas_alias

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

● kas_alias is yet another script in the scripts/ directory

● It provides the alias adding service for duplicate symbols for

both vmlinux image and modules.

● The alias are entries in the main kallsyms table or module

symbols table that duplicates a line, changing the symbol

name by adding @source_file_line_num .

~ # cat /proc/kallsyms | grep " name_show"
ffffcaa2bb4f01c8 t name_show
ffffcaa2bb4f01c8 t name_show@kernel_irq_irqdesc_c_264
ffffcaa2bb9c1a30 t name_show
ffffcaa2bb9c1a30 t name_show@drivers_pnp_card_c_186
ffffcaa2bbac4754 t name_show
ffffcaa2bbac4754 t name_show@drivers_regulator_core_c_678
ffffcaa2bc025e2c t name_show
ffffcaa2bc025e2c t name_show@drivers_fpga_fpga_mgr_c_618
ffffcaa2a052102c t name_show [hello]
ffffcaa2a052102c t name_show@hello_hello_c_8 [hello]
ffffcaa2a051955c t name_show [rpmsg_char]
ffffcaa2a051955c t name_show@drivers_rpmsg_rpmsg_char_c_365 [rpmsg_char]

State as version 7

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

➕ Provides the alias service for the vmlinux image

➕ Provides the alias service for the in-tree modules

➕ Export symbol statistics

➕ Provides the alias service for later builds and/or out-of-tree modules using the exported file

➖ The Makefile machinery I chose to implement the modules part, is at very best, controversial

➖ It does nothing to address the mangled duplicate symbols from LLVM monolithic LTO builds

➖ Duplicate symbols (name and the rest) from headers inclusion, still have duplicate names

➖ Names duplicates from C file inclusion

➖ If a module introduces a duplicate for a symbol that was unique in the tree build, this symbol in the module will have

the alias, the old build does not

Issue Statement:

● Add aliases to necessary modules by extending the Makefile.modfinal pipeline with actions added

to module link commands.

Implementation Details:

● Prepare the kas_alias command in Makefile.modfinal .

● Integrate kas_alias into the linker sequence.

Current Process:

● kas_alias modifies the object inline and uses a backup to handle rebuilds.

● Makefile.modfinal modifies the %.o files directly.

Proposal:

● Update kas_alias to generate a new .o.kas file for each module, rather than altering the original file.

● Depending on configuration, Makefile.modfinal will produce the module from either module.o.kas

(aliases enabled) or module.o (aliases disabled).

Makefile pipeline issue

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

LTO Symbols

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

Issue Statement:

● LTO kernel builds in monolithic mode avoid duplicate symbols, but identifying

mangled symbols with numeric suffixes can be challenging.

Details:

● Monolithic LTO with LLVM nearly eliminates function duplicates from headers, but

different functions with the same name still exist, identified by mangled names.

● These symbols aren’t flagged as duplicates since they’re technically distinct, but:

○ Tracing a symbol’s origin is difficult.

○ The numeric suffix is used only during linking, no use after it.

● Duplicate symbols from the same compiler’s unit follow the same mangling scheme.

Proposal:

● Remove the numeric suffix and treat symbols as if they have none.

$ aarch64-linux-gnu-nm -n
build_aarch64_llvm_mLTO/vmlinux | grep "
name_show[^_]*"
ffffffc080130138 t name_show
ffffffc0809f8f58 t name_show.49514
ffffffc080b186e8 t name_show.56508
ffffffc080d78290 t name_show.76351
ffffffc080d79bb8 t name_show.76393
ffffffc080d81f48 t name_show.76692
ffffffc080d98938 t name_show.77366
ffffffc080deae08 t name_show.80196
ffffffc080e9fdf0 t name_show.87066
ffffffc080ea09c0 t name_show.87087
ffffffc080ea3f18 t name_show.87260
ffffffc080ea6b58 t name_show.87316
ffffffc080eadf48 t name_show.87596
ffffffc081178040 t name_show.101380
ffffffc081283710 t name_show.105581

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

C file inclusion
Issue Statement:

● When a C file includes another C file, debug information for symbols remains

unchanged, even if macros modify the symbol.

Proposal:

● Adjust debug information using the #line directive, with the preprocessor

performing a simple calculation to maintain line number consistency.

Note:

● Although preprocessor math isn’t a real concept, workarounds using

preprocessor hacks can address this issue. It’s not elegant, but it’s effective.

// ====== inc.h ======
#define _X_INC_0 1
#define _X_INC_1 2
#define _X_INC_2 3
…

define INC_LINE(x) INC_LINE_CONCAT(_X_INC_, x)
define INC_LINE_CONCAT(a, b) a ## b

// ====== use.c ======
#include <misc/inc.h>

#ifndef ELF_COMPAT
#define ELF_COMPAT 0
#else
#line INC_LINE(__LINE__) "fs/binfmt_elf.c:compat_binfmt_elf.c"
 #endif

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

Later builds issue
Issue:

● When new kernel modules are built after the initial build, it can introduce symbols that were previously unique but now

become duplicates, leading to inconsistent aliasing between the original build and the new module.

Options to solve this:

● Hire a fortune-teller. Not very professional, thought.

● Accept the current situation and manage new duplicates manually when they arise.

● Add aliases to all symbols, whether they are duplicates or not, to maintain consistency

across builds, and pay the price of an insane amount of useless aliases.

Issue Statement:

● Assumed community acceptance of alias strategy as a possible solution

● Mixed feedback on the mailing list regarding the strategy's value

● Some comments referred to the approach as "ugly" (subjective feedback)

● Technical concerns: decorated symbols cannot be used between versions

● Seeking feedback from the community (or today’s group) on whether to continue the effort

The Alias strategy

Integrating kas-alias into kernel build: Overcoming Challenges with Non-Invasive Modifications

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Integrating kas-alias into kernel build: O
vercom

ing Challenges w
ith N

on-Invasive M
odifications

Thank you

