
Proprietary + Confidential

Masami Hiramatsu (Google) <mhiramat@kernel.org> Sep 2024

Probes in the
kernel

Linux Plumbers Conference 2024

Proprietary + Confidential

Probes in the kernel

Probes

Ftrace features

Next Steps

Q&A

01

02

03

04

05

Agenda

Proprietary + Confidential

Linux kernel supports many “probes”

● Breakpoint probes : kprobes and uprobes
○ Use breakpoint to probe

● Wrapper probe: fprobe
○ Wrapping function/function graph tracer

● Probes in tracefs: eprobe, tprobe
○ Implemented in tracing (not kernel API)

Probes in the kernel

Proprietary + Confidential

Set up a software breakpoint on target address.
User can insert event almost everywhere.

● eBPF / ftrace / perf will use these probes.
● perf probe can analyze debuginfo and helps user to probe source code level. (function body)
● Kretprobe/Uretprobe can hook the function return.
● Kprobes may optimize SWBP with a jump or ftrace (SWBP:~500ns -> Jump: ~100ns)

Kprobes / Uprobes

SWBPcode code

Kernel SWBP
handler kprobes

uprobes

Proprietary + Confidential

Set up function-tracer on target kernel function to trace function entry and exit.

● Faster registration for multiple places.
○ eBPF kprobe_multi uses this probe.

● BTF(BPF type format) allows user to trace function parameters by name.

Fprobe

function

caller

jump Ftrace
trampoline

fprobe

Proprietary + Confidential

Set up probes on existing events and tracepoints.

● Eprobe: Event probe - only on the trace event
○ Add an eprobe on another static trace-event to operate trace event parameters.

■ Dereference pointer / change parameter types
○ Parameters needs to be checked via events/*/*/format

● Tprobe: Tracepoint probe - only on the tracepoint (!= trace event)
○ Add a tprobe on a raw tracepoint to dereference pointer

■ Tracing different fields of given pointers
○ Internally, this is an fprobe variant. Hook the tracepoint by stub function.

Eprobe / Tprobe

Trace-point
(data-structure)

Trace-event
(field values)

Tprobe Eprobe

Proprietary + Confidential

If BTF (BPF Type Format) is supported, user can specify the function parameters and fields of data structure
by its name and dot/allow (./->) operations.

● This feature is enabled on kprobes (if it is on function entry/exit), fprobe and tprobe.
● If return value is a pointer of data structure, it can dereference fields by “->”.

Ftrace feature: BTF support

echo 'f vfs_open path->dentry->d_iname:string path->mnt->mnt_flags:x32 file->f_mode' >>
dynamic_events
echo 1 > events/fprobes/vfs_open__entry/enable
tail -n 1 trace
 tail-468 [013] 787.122923: vfs_open__entry: (vfs_open+
0x4/0xe0) arg1="trace" arg2=0x10000020 arg3=1

Proprietary + Confidential

Function exit probes (kprobe and fprobe) supports entry data access.

● If user specifies entry parameter at function exit probe, it is saved at function entry.
○ E.g. checking a data structure field modification by one probe

Ftrace feature: Entry data support

echo 'f tracefs_create_file%return name:string parent->d_iname:string $retval->d_iname:string
$retval->d_inode->i_uid' >> dynamic_events
echo 1 > events/fprobes/tracefs_create_file__exit/enable
mkdir instances/foo
tail -n 1 trace
 mkdir-463 [010] ...1. 492.968943: tracefs_create_file__exit:
(add_tracer_options+0x220/0x2d0 <- tracefs_create_file) name="test_nop_refuse"
 arg2="options" arg3="test_nop_refuse" arg4=0x0

Proprietary + Confidential

● HWBP probe for tracing a specific variable access

● Monitor probe for periodically monitoring kernel statistics

● Any ideas?

What’s next?

Proprietary + Confidential

Q & A

