


Famfs1 and CXL Shared Memory: 
Progress, Challenges and Usability

John Groves - Micron

1 Famfs stands for Fabric-Attached Memory File System



• System-RAM vs. DAX mode

• John’s Dynamic Capacity Device (DCD) Overview

• Famfs: Core insight, overview and status update

• Cache coherency and memory sharing

Contents



Using CXL Memory: System-RAM vs. DAX
System-RAM

• Memory is onlined and appears as 
a NUMA node with no local CPUs

• Cgroups / numactl policies 
applicable

• Autonuma and migrate_pages()
work

• Hetergeneous interleaving is 
possible, including ratio / weight 
based 

• System-RAM can’t be shared by 
separate systems

• BUT: memory / connectivity failures 
affect system RAS

DAX Mode

• Memory is not directly accessed by the 
kernel – only by apps that use the 
memory

• Apps can access DAX memory; (few 
already know how, but qemu is one)

• Shared memory via DAX works if apps 
know how (but very few apps know how)

• Shared memory via famfs over DAX 
provides scale-out sharing for apps that 
can share files (which many apps can 
do)

• AND: memory/connectivity failures only 
affect the RAS of apps that are using the 
memory or files – not the Linux kernel



• A Dynamic Capacity Device (DCD) is a memory device with allocation and 
access-control built in

• No actual memory is provided until it is allocated

• Tagged allocations are “file like” (but not file-like enough)

• When memory is allocated, it should surface as a DAX “virtual device”
(also known as “tagged capacity”)
• Sharable if the allocation request specified a sharable DCD region

(Regions also control writable vs. read-only, and HW vs SW cache coherency)
• Tags (which are UUIDs) are the namespace to find DCD memory allocations – to 

agree on “which memory is which”
• Tagged Capacity DAX devices must be findable by Tag…

John’s DCD Overview



• Tags are essential to find and identify memory that was allocated for a 
specific purpose, or which contains specific content

• If memory is sharable, it must remain as DAX rather than System-RAM
• System-RAM gets zeroed…

• It’s possible to program hardware interleaving for tagged DAX devices
• …but they all must have identical extent lists in DPA space

(which is a complicated ask)

• Famfs can interleave files across [tagged] DAX devices, with no 
constraints on DPA (or HPA or any) address range particulars

John’s DCD Overview (cont)



• Prior proposals to enable of shared memory might be paraphrased as 

“It’s a new paradigm, requiring new abstractions!”
• See HP’s “The Machine”

• But creating new abstractions tends to require software to be adapted or 

re-written
• (a huge barrier to adoption)

• But the core plumbing already existed in Linux to provide a file system 

interface to shared memory
• No fundamental new abstractions required
• Many apps and work flows can adapt to famfs without the “new paradigm” re-

write – because they already work with data in files!

Famfs: the Core Insight



• The hard problems are:
• Tolerating clients with a stale view of metadata
• Providing efficient vma fault resolution
• Reclaiming space

• Metadata is managed from user space

• Files are strictly pre-allocated (by the Master)

• Space is not reclaimed

• A memory-mapped file provides byte-addressable cache-
line-level access to its backing memory 

• (conventional file systems must load an entire page into 
memory and then load the cache)

• Files default to read-only on Clients, but writable 
access is supported

• Famfs manages cache coherency for its own 
metadata, but not for apps

Famfs Organizes Shared Memory as a File System

Famfs Client
Nodes

Famfs Master Node

/mnt/famfs
/mnt/famfs/set0
/mnt/famfs/set1
/mnt/mnt/famfs/set2
/famfs/set3
…

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>



• Append-only metadata log written by Master and ”played” by Clients

• Handles clients with stale metadata by not supporting truncate or delete

• Metadata handled in user space (library, cli, currently no daemons)

• Read / write / mmap / vma faults handled in kernel

• Memory mapping from famfs == cache-line level access to shared mem

• Many of the limitations can be addressed in future versions

Famfs Architecture



• Introduced at LPC 2023

• Famfs on github

• V1 RFC in Feb 2024

• V2 RFC in April 2024

• LSFMM (May 2024) consensus was that a FUSE port should be 

attempted (lwn)

• This looks feasible but it’s a lot of work
• Much of the famfs kernel functionality will land in fuse
• Patches later this year…barring setbacks

• Interleaved files: August 2024

Famfs Status Update

https://lpc.events/event/17/contributions/1455/
https://github.com/cxl-micron-reskit/famfs
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lwn.net/Articles/983105/


• Larger working sets than can currently fit in server memory

• Avoid sharding and shuffling when data fits in FAM / CXL
• Not all use cases can be readily sharded
• Shuffling (redistributing data to where compute cycles are available) can 

have order n2 (for n nodes)

• Sharing data is effectively de-duplicates in memory

• FAM does not create any new cache coherency problems – it just exacerbates 
some old ones

• Agree on location of data for computational offload
• (Both the Tag namespace and famfs files help with this)

Famfs: Interesting Use Cases



• RocksDB read-only benchmark
• Note FAM is slower but bigger than 

system-ram
• Performance will improve

• Conventional file system (database fully 
cached when it fits) vs. Famfs

• FAM can be scaled independently of server 
memory capacity
• Typical limit is 

12 DDR slots x 256GiB = 3TiB

• X Axis normalized to system-ram size

• This data was shown at FMS ‘24

Famfs: Bigger Data In Memory



• There are not a lot of apps that are candidates for concurrent writer shared 
FAM applications
• But if there are, managing cache coherency for disaggregated memory will be 

(significantly) more expensive than it already is for local memory
• Shared FAM doesn’t create new problems – it just exacerbates some old problems

• There are a lot of apps and use cases that share data sets read-only
• cache coherency is almost free

• There are a lot of apps that share data in a “pipeline” fashion:
one writer at a time, handing off to the next stage when finished
• Coherency is pretty easy

• Shared memory and famfs are well suited to these apps and use cases
(and is compatible with read/write shared if the app has its act together)

• If shared data is read-only, hardware cache coherency is actively detrimental

Cache Coherency



Famfs: Some Viable Apps




	Slide 1
	Slide 2: Famfs1 and CXL Shared Memory: Progress, Challenges and Usability
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

