LINnuX

Plumbers
Conference

a, Austria | September 18-20, 2024

Famfs! and CXL Shared Memory:
Progress, Challenges and Usability

John Groves - Micron

1 Famfs stands for Fabric-Attached Memory File System

= L LINUX PLUMBERS CONFERENCE | sept 5220, 2024

System-RAM vs. DAX mode

John’s Dynamic Capacity Device (DCD) Overview

Famfs: Core insight, overview and status update

Cache coherency and memory sharing

“ N A O DI L Vienna, Austria
| J I .- - | - Sept. 18-20, 2024

System-RAM

Memory Is onlined and appears as
a NUMA node with no local CPUs

Cgroups / numactl policies
applicable

Autonuma and migrate pages()
work

Hetergeneous interleaving IS
possible, including ratio / weight
based

System-RAM can't be shared by
separate systems

BUT. memory / connectivity failures
affect system RAS

DAX Mode

Memory Is not directly accessed by the
kernel — only by apps that use the
memory

Apps can access DAX memory; (few
already know how, but gemu Is one)

Shared memory via DAX works If apps
know how (but very few apps know how)

Shared memory via famfs over DAX
provides scale-out sharing for apps that
can share files (which many apps can
do)

AND: memory/connectivity failures only
affect the RAS of apps that are using the
memory or files — not the Linux kernel

Vienna, Austria
Sept. 18-20, 2024

* A Dynamic Capacity Device (DCD) Is a memory device with allocation and
access-control built In

* No actual memory is provided until it is allocated
» Tagged allocations are “file like” (but not file-like enough)

 When memory is allocated, it should surface as a DAX “virtual device”
(also known as “tagged capacity”)

 Sharable if the allocation request specified a sharable DCD region
(Regions also control writable vs. read-only, and HW vs SW cache coherency)

* Tags (which are UUIDs) are the namespace to find DCD memory allocations —to
agree on “which memory is which”

ﬁ * Tagged Capacity DAX devices must be findable by Tag...

‘ ¥ N A O ‘ DI L Vienna, Austria
| | - | Sept. 18-20, 2024

* Tags are essential to find and identify memory that was allocated for a
specific purpose, or which contains specific content

* |f memory Is sharable, it must remain as DAX rather than System-RAM
 System-RAM gets zeroed...

* |t's possible to program hardware interleaving for tagged DAX devices

* ...butthey all must have identical extent lists in DPA space
(which is a complicated ask)

» Famfs can interleave files across [tagged] DAX devices, with no
constraints on DPA (or HPA or any) address range particulars

)

“ - \ AT 5 C ~ ' D ~T Vienna, Austria
Sept. 18-20, 2024

* Prior proposals to enable of shared memory might be paraphrased as

“It's a new paradigm, requiring new abstractions!”
e See HP’s “The Machine”

* But creating new abstractions tends to require software to be adapted or

re-written
* (ahuge barrier to adoption)

» But the core plumbing already existed in Linux to provide a file system

Interface to shared memory
* No fundamental new abstractions required
* Many apps and work flows can adapt to famfs without the “new paradigm” re-

ﬁ write — because they already work with data in files!

. ‘ DI ~T Vienna, Austria
Sept. 18-20, 2024

)

The hard problems are:
* Tolerating clients with a stale view of metadata
* Providing efficient vma fault resolution
* Reclaiming space

' /mnt/famfs Irrrnna
Metadata is managed from user space e et = %‘
Files are strictly pre-allocated (by the Master) e eta F — :l . C—)
Space is not reclaimed /famfs/set3 C—)
_ _ Shared Memory Famfs Client
A memory-mapped file provides byte-addressable cache- - Nodes
line-level access o Its backing memory | | nkfs. famfs /dev/daxd.o
* (conventional file systems must load an entire page into famfs mount /dev/dax@.0 /mnt/famfs

Famfs Master Node

memory and then load the cache) Em: Eﬁeiﬂsf!i;idfiib

Files default to read-only on Clients, but writable
access Is supported

Famfs manages cache coherency for its own
metadata, but not for apps

“ | N A O DI L Vienna, Austria
| Sept. 18-20, 2024

Famfs Architecture

Append-only metadata log written by Master and “"played” by Clients
Handles clients with stale metadata by not supporting truncate or delete
Metadata handled in user space (library, cli, currently no daemons)
Read / write / mmap / vma faults handled in kernel

Memory mapping from famfs == cache-line level access to shared mem
Many of the limitations can be addressed in future versions

DAX Memory Device
|
ffoo/bar Jffoo/bar
data 0 data 1

Log Entry: mkdir Log Entry: file create
Relpath: ./foo Relpath: ./foo/bar

Size: 2GiB
Extent list: (count=2)

- offset, len = (2GiB, 1GiB)
- offset, len = (12GiB, 1GiB)

* Data is disjoint in memory because the file has
2 non-contiguous extents

* Apps that mmap the file will see it as a
contiguous virtual memory range (this is
standard filesystem stuff)

LINUX PLUMBERS CONFERENCE | se 620, 2024

Famfs Status Update

* [ntroduced at LPC 2023
* Famfs on github

V1 REFCIn Feb 2024

« V2 REC In April 2024

 LSFMM (May 2024) consensus was that a FUSE port should be
attempted (Iwn)

* This looks feasible but it’s a lot of work
* Much of the famfs kernel functionality will land in fuse
* Patches later this year...barring setbacks

* |nterleaved files: August 2024

)

LINUX PLUMBERS CONFERENCE | se 620, 2024

https://lpc.events/event/17/contributions/1455/
https://github.com/cxl-micron-reskit/famfs
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lwn.net/Articles/983105/

» Larger working sets than can currently fit iIn server memory

» Avoid sharding and shuffling when data fits in FAM / CXL
* Notall use cases can be readily sharded

* Shuffling (redistributing data to where compute cycles are available) can
have order n? (for n nodes)

» Sharing data Is effectively de-duplicates in memory

 FAM does not create any new cache coherency problems — it just exacerbates
some old ones

» Agree on location of data for computational offload
ﬁ * (Boththe Tag namespace and famfs files help with this)

“ - \ AT 5 C ~ ' D ~T Vienna, Austria
' Sept. 18-20, 2024

RocksDB read-only benchmark
e Note FAM is slower but bigger than Operations Per Second (Uniform Random Read, 16 Threads)

XFS-SSD (Fully cached in system-RAM when possible) Famfs (Shared CXL RAM)

system-ram
* Performance will improve

200000
150000

100000

Conventional file system (database fully
cached when it fits) vs. Famfs 50000

0
0.38 0.56 0.75 0.95 1.14 1.33 1.52 1.70 1.91

FAM can be scaled independently of server | DB Size / System RAM Size

memory capacity
 Typicallimitis _
12 DDR slots x 256GiB = 3TiB P99 Latency (Uniform Random Read, 16 Threads)

XFS-SSD (Fully cached in system-RAM when possible) Famfs (Shared CXL RAM)
100000

X Axis normalized to system-ram size

P99 Latency (uSecs)

This data was shown at FMS ‘24

ﬁ

0.15 0.38 0.56 0.75 0.95 1.14 1.33 1.52 1.70 1.91
DB Size / System RAM Size

Vienna, Austria
Sept. 18-20, 2024

There are not a lot of apps that are candidates for concurrent writer shared
FAM applications

* Butifthere are, managing cache coherency for disaggregated memory will be
(significantly) more expensive than it already is for local memory

« Shared FAM doesn’t create new problems — it just exacerbates some old problems

There are a lot of apps and use cases that share data sets read-only
e cache coherencyis almost free

There are a lot of apps that share data in a “pipeline” fashion:

one writer at a time, handing off to the next stage when finished
e (Coherency is pretty easy

Shared memory and famfs are well suited to these apps and use cases
(and Is compatible with read/write shared if the app has its act together)

If shared data Is read-only, hardware cache coherency Iis actively detrimental

‘ ¥ N A O ‘ DI L Vienna, Austria
| | Sept. 18-20, 2024

Famfs: Some Viable Apps

AAPACﬁEROW>>> J.u pyter n:i: NumPy
- '
() !l pandas

[% DASK PyTorch o

LINUX

Plumbers
Conference

a, Austria | September 18-20, 2024

	Slide 1
	Slide 2: Famfs1 and CXL Shared Memory: Progress, Challenges and Usability
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

