
Hans Holmberg, WDC Research

Zoned XFS
Zoned RT devices support

https://en.wikipedia.org/wiki/File:Under_Construction.jpeg

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Project overview

• Zoned XFS has been discussed on and off for a few years

• Project kicked off at ALPSS '24

• Current state: experimental

• Supports SMR HDDs, ZNS SSDs, Zoned mobile flash and
conventional block devices

• Can handle large benchmark runs

• Passing 99% of applicable xfstests

• Code

2

Acknowledgements

• Darrick J. Wong - XFS Real time dependencies

• Christoph Hellwig - Most of the work

• Damien Le Moal – Experimentation and tuning for SMR

• Shinichiro Kawasaki - Testing

• Hans Holmberg – Data placement, work on space accounting,
garbage collection

kernel: https://git.infradead.org/?p=users/hch/xfs.git;a=shortlog;h=refs/heads/xfs-zoned

xfs-progs: https://git.infradead.org/?p=users/hch/xfsprogs.git;a=shortlog;h=refs/heads/xfs-zoned

xfstests: https://git.infradead.org/?p=users/hch/xfstests-dev.git;a=shortlog;h=refs/heads/xfs-zoned

http://xhttps/git.infradead.org/?p=users/hch/xfs.git;a=shortlog;h=refs/heads/xfs-zoned
http://Xhttps:/git.infradead.org/?p=users/hch/xfsprogs.git;a=shortlog;h=refs/heads/xfs-zoned
https://git.infradead.org/?p=users/hch/xfstests-dev.git;a=shortlog;h=refs/heads/xfs-zoned

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

XFS On Disk Data Structures

• Data

• XFS allocates data into Allocation Groups (AGs)

• Virtual storage regions of fixed size

• Each AG manages its own set of files and manages its own
backing storage

• Provides both scalability and parallelism

• Metadata is stored in two B+ trees

• One for file attributes and one for storing file extent metadata
(file -> data blocks mapping)

• Problem: B+ trees is not a good fit for log-structured-writes

• Requires in-place updates

• Incompatible with append-only zoned writes

• What do we do?

3

Block device

AG 2

AG 1

AG 4

AG 3

AG ..

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

XFS Realtime feature - CONFIG_XFS_RT

• Allows data and meta data on different devices

o We can keep the B+ trees and focus on data on zoned storage. For now.

• Separates data with realtime access requirements from other data

• All data will be automatically placed on the realtime device with rtinherit=1 mount option

4

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Zoned RT Devices support

5

• Depends on conventional block storage for metadata.

• Limitation: Space can run out on the metadata block device before the data
device and vice versa

• Conventional zones or conventional name spaces can be used for the metadata,
so a separate device is not required

• Maps Real Time Allocation Groups (RTGs) to Zones 1:1

• Utilizes Copy On Write (CoW) to avoid in-place updates for data

• Implements a new data allocator

• Treats zones as buckets and fills them up using zone appends

• How should we allocate data? What is the best way to do this?

Metadata

Data zone 1

Block device A (conventional)

Block device B (zoned or conventional)

Data zone 2RTG 2

RTG 1

Data zone 3

Data zone 4RTG 4

RTG 3

Data zone ..RTG ..

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data allocation

• Zoned storage allows the host to make active choices data placement on the media

• Opportunity: reduce write amplification if we get this right

• Improved performance - less background writes from garbage collection, higher user throughput

• Reduced media wear , longer media life time - reduced C02 emissions

• How?

• Minimize fragmentation by separating file data into different zones

• When a file is deleted, all of its data will be invalidated on disk..

6

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

7

Zones

Max open data zones = 3

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

8

Zones

Max open data zones = 3

file_a.dat Open

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

9

Zones

Max open data zones = 3

file_a.dat

file_b.dat
Open

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

1 0

Zones

Max open data zones = 3

file_a.dat

file_b.dat Open

file_c.dat

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

1 1

Zones

Max open data zones = 3

file_a.dat

file_b.dat

Openfile_c.dat

file_d.dat

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

1 2

Zones

Max open data zones = 3

file_a.dat

file_b.dat

Open

file_c.dat

file_d.dat

file_e.dat

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Data placement by file

• Try to minimize fragmentation

• Current (generic) algorithm

• Keep max N zones open for writes

• Separate data from different files into different
zones as far as possible

• Use the Least Recently Used zone if an empty
zone can not be assigned

1 3

Zones

Max open data zones = 3

file_a.dat

file_b.dat

Open

file_c.dat

file_d.dat

file_e.dat

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Write life time hint support

• We utilize write life time hints when passed by the user

o fcntl(fd_, F_SET_RW_HINT, &fcntl_hint)

• Heuristic

o Colocate file data if there is a good match between expected life
time of the data stored in an open zone with incoming file data

o Separate file data if there is not a good match

o Based on statistics from RocksDB

• More workloads needs to be evaluated..

1 4

static bool

xfs_good_hint_match(

 struct xfs_rtgroup *rtg,

 enum rw_hint file_hint)

{

 switch (rtg->rtg_write_hint) {

 case WRITE_LIFE_LONG:

 case WRITE_LIFE_EXTREME:

 /* don't colocate cold data */

 break;

 case WRITE_LIFE_MEDIUM:

 /* colocate medium with medium */

 if (file_hint == WRITE_LIFE_MEDIUM)

 return true;

 break;

 case WRITE_LIFE_SHORT:

 case WRITE_LIFE_NONE:

 case WRITE_LIFE_NOT_SET:

 /* colocate short and none */

 if (file_hint <= WRITE_LIFE_SHORT)

 return true;

 break;

 }

 return false;

}

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Reclaim

• To reclaim unused written space, garbage collection (GC) is needed

• Current design:

• Lazy

• Start gc when data separation is impacted

• Target: keep N open zones open for data placement

• Greedy victim selection

• The zone with most reclaimable space is picked by the GC daemon

• Open zones are not garbage collected

• Allocate moved data separately from user writes

• simple hot/cold separation heuristic

1 5

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Balancing User and GC writes

• When write pressure and write amplification is high, we need to make sure that reclaim can keep
up to avoid running out of free zones

• We may need to block until free space is available

• Problem: the minimum reclaim unit is a zone

• We may have to run GC over several zones

• Freeing up a whole zone can take seconds(!) if fragmentation is high

• Stopping user writes completely during a full-zone reclaim is not OK

• Solution: rate-limit user writes

• Make user writes wait in a queue for free space

1 6

Zone 1

Example: Space from three zones
needs to be reclaimed to free one
zone

Zone 2

Zone 3

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

User write throtteling

1 7

Zz Zz Zz

User writes

Free space

• When running low on free zones, we awake the GC daemon and make user writes
reserve free space before data allocation

• If the reservation cannot be covered by existing free space, the write is put to
sleep until enough free space has been reclaimed to cover number of blocks for
the incoming write

• Free space is produced by the garbage collection daemon in small chunks as data
is being moved of the current zone being reclaimed:

• reclaimed_space += gc_chunk_size / reclaim_ratio

• reclaim_ratio is needed to compensate for current level of
fragmentation / write amplification

• Updating the reclaimed space counter in small increments avoids
large spikes in write latency

Example: The GC daemon needs
to move two blocks to free up
one block. Reclaim_ratio =
0.666..

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Demo: gc stress test

1 8

• Virtual nullblk device 64 zone, max 16 open

• 15 data zones

• one dedicated to GC writes

• Phase 1: fillup

• The workload generates files of random size until the
file system is filled to 95%

• Phase 2: mixed write/delete

• New files of random size are being written

• Random existing files are deleted in parallel to stay at
95% file system utilization

• xfstests-dev/tests/generic/747

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

Early data placement benchmarks
• Setup

o RocksDB 7.6.3 using direct IO

o db_bench filluniquerandom, overwrite, readwhilewriting

o 80% drive utilization

o 1TB Conventional vs Zoned SSDs (same raw read/write performance)

o XFS Zoned kernel dev branch (v6.10.0 - edition)

o Performance improvements for write workloads

o Data-placement-by-file very effective when matching file size with zone capacity

o Reduced reclaim increases user read and write throughput (2x)

o Write-life-time-hint support adds ~10%

o On par, or better than ZenFS (used as a reference – 1.0 write amp.)

1 9

38962

68898

76180
71670

0

10000

20000

30000

40000

50000

60000

70000

80000

XFS_CONV XFS_ZONED XFS_ZONED_HINTS ZENFS_ZONED

Overwrite - write operations/s

72908

141708 142206 140991

0

20000

40000

60000

80000

100000

120000

140000

160000

XFS_CONV XFS_ZONED XFS_ZONED_HINTS ZENFS_ZONED

Read while writing - read operations/ s

© 2 02 3 WE ST ERN D IGIT AL CORPORAT ION OR IT S AFF ILIA T ES ALL RIGH T S RE SE RVE DWE ST ERN D IGIT AL

What Comes Next?

• Upstream

• outstanding xfs-realtime dependencies

• zoned additions in fs/xfs/ (~3k lines added)

• xfstools (mkfs..)

• xfstests (infrastructure, new tests)

• Look out for the RFC!

• More benchmarking

• Start thinking about log-structured metadata..

2 0

	Slide 1: Zoned XFS
	Slide 2: Project overview
	Slide 3: XFS On Disk Data Structures
	Slide 4: XFS Realtime feature - CONFIG_XFS_RT
	Slide 5: Zoned RT Devices support
	Slide 6: Data allocation
	Slide 7: Data placement by file
	Slide 8: Data placement by file
	Slide 9: Data placement by file
	Slide 10: Data placement by file
	Slide 11: Data placement by file
	Slide 12: Data placement by file
	Slide 13: Data placement by file
	Slide 14: Write life time hint support
	Slide 15: Reclaim
	Slide 16: Balancing User and GC writes
	Slide 17: User write throtteling
	Slide 18: Demo: gc stress test
	Slide 19: Early data placement benchmarks
	Slide 20: What Comes Next?
	Slide 21

