
SSDFS: ZNS/FDP ready LFS file system saving your space
and decreasing TCO cost
Viacheslav Dubeyko

1SSDFS.ORG

2

Content

1. What is the point of SSDFS?
2. Recently implemented and stabilized features
3. Current status and upstreaming plans
4. Planned new features

SSDFS.ORG

3

What is the point of SSDFS?

SSDFS can prolong SSD lifetime
2x - 10x for real-life use-cases

SSDFS is capable to generate smaller
amount (1.5x - 20x) of write I/O requests

comparing with other file systems.

SSDFS.ORG

4

SSDFS architecture (logical vs. physical view)

SSDFS.ORG

5

SSDFS architecture (metadata)

SSDFS.ORG

6

Recently implemented and stabilized features

Newly implemented features:
● folio support
● Offset translation table compression
● Storing offset translation table in every log
● Erase block inflation model
● Erase block based deduplication
● Fixed set of superblock segments
● recoverfs tool
● Snapshot rules

Stabilized features:
● Support 8K, 16K, 32K logical block sizes
● Support multiple erase blocks in segment (not fully stabilized)

SSDFS.ORG

7

Folio support

Current status:
● Folio support is implemented and tested
● It looks mostly stable (however, some particular issues could be found)
● Finally, 8K, 16K, 32K logical block sizes support works in predictable way now

Some worries:
● Technically speaking, there is no guarantee that folio of 16K or 32K will be allocated (in the case of memory

fragmentation). So, file system needs to be ready to process logical block that contains several smaller folios (for
example, potentially, 32K can be represented by 16K, 8K, 4K, 4K folios set)

● Readahead logic doesn’t take into account the logical block size for a particular file system volume. As a result,
real-life case is of having 32K folios in the page cache even if file system works with (and expects) 16K logical block
sizes. Why readahead logic doesn’t take into account the logical block size?

SSDFS.ORG

8

Storing offset table in every log vs. distributed model

● Storing offset translation table in every log mostly
doesn’t initiate more write I/O requests compared
with distributed model of offset translation table

● 128KB, 256KB erase blocks don’t benefit from
storing offset translation table in every log for the
case of read I/O requests

● Storing offset translation table in every log makes
sense for 512K, 2MB, 8MB and bigger erase block
sizes because it could reduce amount of read I/O
requests 3x times

● However, if number of logs per erase block is lesser
than 20, then storing offset translation table in
every log approach can generate more read I/O
requests

● “Cold” data could benefit from distributed model of
offset translation table

● Storing offset translation table in every log is
beneficial for the case of frequently updated data.

SSDFS.ORG

9

Erase block inflation model + moving scheme

Erase block inflation model is capable of storing 1.5x - 12x more data
than physical capacity of erase block.

SSDFS.ORG

10

Erase block based deduplication

SSDFS.ORG

11

The recoverfs tool

Erase block 1 Erase block 2 Erase block N…

Corrupted volume Clean volume

recoverfs

Extract Recreate files

Copy data from corrupted volume as a last resort

Log 1 Log n…

struct ssdfs_block_descriptor {
 __le64 ino;
 __le32 logical_offset;
 __le16 log_start_page;
 __le8 log_area;
 __le32 byte_offset;
}

SSDFS.ORG

12

Snapshot rules

User-space

Kernel-space

snapshotfs.ssdfs
Snapshot rule

● make snapshot (every sync, hour, day, week, month)
● snapshot experies (in hour, day, week, month, year)

Create rule

Snapshot rules

Save rule

sync_fs logic

snapshots b-tree

snapshot b-tree thread

mapping table thread

Check rules

Create snapshot

Check snapshots expiration

Remove expired snapshotsFind pre-erased blocks

Check valid
snapshot(s) for erase

block
Erase pre-erased blocks SSDFS driver

SSDFS.ORG

13

Microbenchmarking: environment

Linux 6.10.0 #34 SMP PREEMPT_DYNAMIC Tue Aug 13 18:50:14
MSK 2024 x86_64 x86_64 x86_64 GNU/Linux

11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
MemTotal: 32452532 kB

Model Family: Silicon Motion based SSDs
Device Model: TS128GSSD230S
User Capacity: 128,035,676,160 bytes [128 GB]
Sector Size: 512 bytes logical/physical
Rotation Rate: Solid State Device
Form Factor: 2.5 inches
TRIM Command: Available, deterministic, zeroed
ATA Version is: ACS-3 T13/2161-D revision 5
SATA Version is: SATA 3.3, 6.0 Gb/s (current: 6.0 Gb/s)

CREATE:

for (i = 0; i < file_number; i++) {
 touch <file_name>
 dd if=./pattern1.bin of=<file_name> conv=notrunc oflag=append bs=4096 count=1
}
sync

READ:

for (i = 0; i < file_number; i++) {
 md5sum <file_name>
}

UPDATE:

for (i = 0; i < file_number; i++) {
 dd if=./pattern2.bin of=<file_name> conv=notrunc seek=offset bs=4096 count=1
 offset += 4096
}
sync

DELETE:

for (i = 0; i < file_number; i++) {
 rm <file_name>
}
sync

SSDFS.ORG

14

Microbenchmarking: create operation

Th
e

le
ss

er
 t

he
 b

et
te

r
Th

e
bi

gg
er

 t
he

 b
et

te
r

D
ur

at
io

n
I/

O
 re

qu
es

ts
Pe

rf
or

m
an

ce

SSDFS.ORG

15

Microbenchmarking: read (MD5) operation

Th
e

le
ss

er
 t

he
 b

et
te

r
Th

e
bi

gg
er

 t
he

 b
et

te
r

D
ur

at
io

n
I/

O
 re

qu
es

ts
Pe

rf
or

m
an

ce

SSDFS.ORG

16

Microbenchmarking: update operation

Th
e

le
ss

er
 t

he
 b

et
te

r
Th

e
bi

gg
er

 t
he

 b
et

te
r

D
ur

at
io

n
I/

O
 re

qu
es

ts
Pe

rf
or

m
an

ce

SSDFS.ORG

17

Microbenchmarking: delete operation

Th
e

le
ss

er
 t

he
 b

et
te

r
Th

e
bi

gg
er

 t
he

 b
et

te
r

D
ur

at
io

n
I/

O
 re

qu
es

ts
Pe

rf
or

m
an

ce

SSDFS.ORG

18

Microbenchmarking: conclusion

SSDFS is capable to demonstrate a better performance for data with good compression ratio:

read operation:
● ext4: 1.1x - 3.7x
● xfs: 1.1x - 3.7x
● btrfs: 1x - 3.4x
● nilfs2: 1.2x - 4x
● f2fs: 1.2x - 3.9x
● bcachefs: 0.8x - 3x

create operation:
● ext4: 1.2x - 1.8x
● xfs: 1.2x - 1.8x
● btrfs: 1.3x - 1.8x
● nilfs2: 1.1x - 1.9x
● f2fs: 1.2x - 1.8x
● bcachefs: 0.9x - 1.7x

update operation:
● ext4: 1.5x - 1.8x
● xfs: 1.5x - 1.8x
● btrfs: 1.4x - 1.7x
● nilfs2: 1.5x - 1.8x
● f2fs: 1.5x - 1.8x
● bcachefs: 1.5x - 1.7x

delete operation:
● ext4: 1.2x - 2.2x
● xfs: 1.4x - 2.2x
● btrfs: 1.5x - 2.2x
● nilfs2: 1.5x - 2.8x
● f2fs: 1.7x - 2.6x
● bcachefs: 1.5x - 2.2x

● The bigger erase block size is the better.
● Small erase block size (for example, 128KB, 256KB) could be the reason of bigger amount of metadata in the logs.
● SSDFS can be more efficient with small files.
● Read operation with big files looks like not very efficient for the case of SSDFS file system.
● Create, update, and delete operations look pretty efficient for the most cases.

SSDFS.ORG

19

Current status, issues, and plans

Stable features:
• Mount logic – stable
• Mapping table – stable
• Segment bitmap – stable
• Migration scheme – stable
• Inodes tree – stable
• Dentries tree – stable
• Extents tree – stable
• Folio support – stable
• 8K/16K/32K logical block – stable
• Erase block based deduplication - stable

SSDFS tools: https://github.com/dubeyko/ssdfs-tools.git
SSDFS driver: https://github.com/dubeyko/ssdfs-driver.git
Linux kernel with SSDFS support: https://github.com/dubeyko/linux.git

NOT stable features:
• Erase block inflation model - not fully stable
• ZNS support - not stable
• Shared dictionary - not stable
• recoverfs - not stable
• Xattrs tree – not fully stable
• Delta-encoding – not fully stable
• Multiple erase blocks in segment – not stable

Under implementation:
• Deduplication – not fully implemented
• Snapshots – not fully implemented
• Fsck – not fully implemented

● Erase block inflation model
● Shared dictionary
● ZNS support

Share a new patchset with open-source communityStabilize

SSDFS.ORG

20

Planned new features

● FDP support
● Delta-encoding similar logical blocks
● Online fsck + offline fsck
● Scrubbing
● Multi-drive support
● Erasure coding scheme
● File-based deduplication
● Snapshot access + management

SSDFS.ORG

21

THANK YOU

QUESTIONS???

SSDFS.ORG

