
How is kernel
getting along with

many cgroups

Michal Koutný <mkoutny@suse.com>
LPC 2024, Wien

1

mailto:mkoutny@suse.com

Outline

● Assumed use cases
● Considered aspects
● Changes done in the past
● Changes (not) done ~ proposals
● Other ideas

● Discuss (anytime), complain

2

Assumed use cases

● No cgroups (singular trees)
● Single server
● Container host
● Desktop
● (v1 setups)
● Specific setups

CONFIG_CGROUPS=y
CONFIG_CGROUP_*=y
CONFIG_BLK_CGROUP=y
CONFIG_CPUSETS=y
CONFIG_RT_GROUP_SCHED=n
CONFIG_SCHED_AUTOGROUP=n

CONFIG_MEMCG=y
CONFIG_MEMCG_KMEM=y
CONFIG_CGROUP_DEBUG=n

3

Considered aspects

● Locking
○ cgroup_mutex
○ cgroup_threadgroup_rwsem
○ controllers’ locks

● Full (sub)tree operations
○ stats
○ offlined objects
○ memory reclaim
○ (userspace iterations?)

● Full depth operations
○ stats, charging
○ group scheduling

● Memory footprint
○ data overhead
○ fragmentation

4

Changes done in the past

● cgroup_mutex
○ 9067d90006df0 ("cgroup: Eliminate the need for cgroup_mutex in proc_cgroup_show()") v6.8-rc1~182^2~16
○ 822bc9bac9e9a ("cgroup: no need for cgroup_mutex for /proc/cgroups") v5.16-rc1~146^2~2
○ bb758421416fd ("cgroup: remove cgroup_mutex from cgroupstats_build") v5.16-rc1~146^2~3
○ be288169712f3 ("cgroup: reduce dependency on cgroup_mutex") v5.16-rc1~146^2~4

● cgroup_threadgroup_rwsem
○ 6a010a49b63ac ("cgroup: Make !percpu threadgroup_rwsem operations optional") v6.0-rc1~157^2~2

● rstat improvements
○ precision vs overhead tradeoff: conditional and periodic flushing
○ 3b8cc62987240 ("blk-cgroup: Optimize blkcg_rstat_flush()") v6.2-rc1~129^2~68
○ 7bd5bc3ce9632 ("mm: memcg: normalize the value passed into memcg_rstat_updated()") v6.7-rc1~90^2~208

○ 8d59d2214c236 ("mm: memcg: make stats flushing threshold per-memcg") v6.8-rc1~180^2~203
○ 21c38a3bd4ee3 ("cgroup/rstat: add cgroup_rstat_cpu_lock helpers and tracepoints") v6.10-rc1~138^2
○ ff48c71c26aae ("memcg: reduce memory for the lruvec and memcg stats") v6.10-rc1~105^2~40

5

Changes not done ~ proposals

● Cleaning up of offlined memcgs traversal
○ offlined memcgs should be only memory not time garbage
○ mem_cgroup_scan_tasks may skip offline memcgs (zombies at most)
○ v1 only

■ mem_cgroup_mark_under_oom needn’t process offline memcg
■ mem_cgroup_oom_trylock
■ mem_cgroup_oom_notify

○ writeback on behalf of offlined memcgs and blkcgs?

● Does damon_sysfs_memcg_path_to_id need traversal?
● BPF cgroup iterator’s locking?
● More cond_rescheds?
● [PATHC v3 -next 0/3] Some optimizations about freezer

6

http://lore.kernel.org/r/20240915071307.1976026-1-chenridong@huawei.com

Other proposals (broader scope)

● More VMs on one physical machine
○ partitioning whole kernels

● Getting out of way in latency sensitive paths
○ sched_ext group scheduling
○ memcg deferred charging

7

How is kernel getting
along with many

cgroups?

8

The latest kernel – well enough
(until anyone notices).

References

● LPC 2022, cgroup rstat's advanced adoption
● [RFC] memcg rstat flushing optimization
● Authors of referenced commits: Yosry Ahmed, Shakeel Butt, Jesper Dangaard Brouer, Tejun Heo,

Waiman Long, Chen Ridong, Yafang Shao,...
● UATC 2022, RunD: A Lightweight Secure Container Runtime for High-density Deployment and

High-concurrency Startup in Serverless Computing

9

https://lpc.events/event/16/contributions/1240/attachments/1121/2154/rstat-slides-v2.pdf
https://lore.kernel.org/r/CAJD7tkZQ+L5N7FmuBAXcg_2Lgyky7m=fkkBaUChr7ufVMHss=A@mail.gmail.com/
https://www.usenix.org/system/files/atc22-li-zijun-rund.pdf
https://www.usenix.org/system/files/atc22-li-zijun-rund.pdf

10

Extra slides

cgroup_threadgroup_rwsem

● Inverted lock
● Readers: fork, exit (~invisible)
● Writers: cgroup migration (exclusive, stability)
● Conveniently unnecessary with CLONE_INTO_CGROUP
● Migrations vs fork/exit trade-off

○ favordynmods mount option to favor migrations at expense of fork/exit

● Implemented as percpu_rw_semaphore
○ Cheap for readers (this_cpu_inc)
○ Expensive for writers (rcuwait, ~RCU(?))

11

rstat

● local-only writers (per-cpu)

○ cgroup_rstat_updated(cgrp, cpu)
○ building and update tree
○ cgroup_rstat_cpu_lock

● aggregating readers (flushing)

○ ->css_rstat_flush(css, cpu)
○ only processing cases from the update tree
○ cgroup_rstat_lock
○ with inter cpu cond_resched

12

rstat – memcg

● writers (per-cpu)

○ per-cpu and memcg error tracking
○ MEMCG_CHARGE_BATCH

● flushing

○ periodic flushing (0.5/s)
○ conditional subtree flushing (based on error)
○ rate-limited (sub)tree flushing (based on delay)
○ No flushing on CPU hotunplug (Bug? Fixes:

7e1c0d6f58207)

13

