

seccomp
×

pointers

Aleksa Sarai
cyphar@cyphar.com

CC-BY-SA 4.0

mailto:cyphar@cyphar.com

seccomp limitations

struct open_how {

u64 flags;

u64 mode;

u64 resolve;

}

int openat2(int dfd, const char *path,
 struct open_how *how, size_t size);

• seccomp cannot filter pointer contents.

• openat2(2) and similar syscalls are very useful to
security-conscious programs but seccomp filter
authors want to be able to restrict them.

• Solving this problem in general with cBPF is
probably intractable.

• However, we can try to solve this just for
extensible struct syscalls (clone3, openat2,
mount_setattr, …).

• This is a slightly more fleshed out version of Kees’
proposal.

https://lore.kernel.org/ksummit/202005200917.71E6A5B20@keescook/
https://lore.kernel.org/ksummit/202005200917.71E6A5B20@keescook/

basic idea *hand-wavy*

syscalls

• This must be opt-in per-syscall.

• On syscall entry, if a seccomp filter is enabled,
cache the structure contents so the filter and
syscall see the same structure.

• Probably stashed in struct task during the
syscall, keyed by the structure pointer value.

filters

• struct seccomp_data has the cached structure
contents appended.

• Because of cBPF limitations, the information
needs to be represented in a cBPF-friendly way.

• Parts of the seccomp notification API and the
validator will probably need to be reworked to
handle variable-sized struct seccomp_data.

• Main issue is that seccomp_data’s size is now based
on the syscall (and possibly per-call!).

syscall and seccomp_data changes *very hand-wavy*

syscall definitions

• Each opted-in syscall has an entry in a section
(a-la __syscalls_metadata) which contains:

• Which argument(s) are the pointer and size.
• The current kernel size for that structure type.
• (Optional) A list of the historical struct sizes if

we want to make sure the “effective size” is
not completely arbitrary.

seccomp_data extensions

• struct seccomp_data has following data
appended:

• (Optional) The pointer of the structure (for eBPF?).
• A flag if there was trailing data past ksize.
• The “effective size” of the structure.
• The contents of the structure as a flat buffer.

• The “effective size” could be smaller than ksize and
usize!

• Smallest valid size that contains all non-zero bits.
• Provides compatibility with old filters.
• Not sure how the verifier could deal with this…

filters *very hand-wavy*

struct seccomp_data {

int nr;

u32 arch;

u64 instruction_pointer;

u64 args[6];

struct pointer_data {

u64 ptr;

u64 size; /* <= ksize */

bool trailing; /* check_zeroed_user */

u8 data[.size];

} pointer;

};

• We could represent multiple pointers, but cBPF’s
two measly registers would result in huge filters.

• Linus has NACKed nested pointer filtering anyway.

https://lore.kernel.org/ksummit/CAHk-=wierGOJZhzrj1+R18id-WdfmK=eWT9YfWdCfMvEO+jLLg@mail.gmail.com/

filters *very hand-wavy*

if (data.nr == SYS_foo) {

/* ... check arguments as normal ... */

if (data.pointer.trailing ||

 data.pointer.size > SIZE_VER1) {

/* filter cannot handle this version */

return SECCOMP_RET_ERRNO(E2BIG);

}

if (data.pointer.size >= SIZE_VER0) {

/* ... check v0 fields ... */

}

if (data.pointer.size >= SIZE_VER1) {

/* ... check v1 fields ... */

}
return SECCOMP_RET_ALLOW;

}

• Should we implement the trailing logic in
seccomp itself (as part of fetching the structure)?

• Ultimately, the syscall will return -E2BIG anyway.
• Tracer or notifiers might want to fake support?

• The list of struct sizes lets filters only need to
handle a fixed number of known versions.

• How should we deal with the verifier…

possible extensions

• For fixed-size structure syscalls, the same design can be re-used without modifications.

• There is a planned extension for extensible-struct syscalls to do feature checking.

• Kernel fills the structure with all valid bit patterns.
• This needs to be done in a way that seccomp filters can unconditionally allow it.
• RFC patchset uses the highest bit in the size.
• What should the seccomp cache contain? Does it make sense to copy the struct in this case?

https://lwn.net/Articles/830666/
https://lore.kernel.org/all/20240906-extensible-structs-check_fields-v2-0-0f46d2de9bad@cyphar.com/

Discussion, questions, … pitchforks?

