
1

Isolated user namespaces &
cgroupfs

Stéphane Graber
Owner, Zabbly
stgraber@stgraber.org

Aleksandr Mikhalitsyn
Software engineer, Canonical
aleksandr.mikhalitsyn@canonical.com

2

Intro

Quick recap

● Currently, each usable UID (or GID) must have a corresponding UID on the
host

● We use 32-bit-wide type to represent UID
● We may want to have different containers on the machine to have

non-intersecting UID ranges
● ⇒ we can not provide all the containers with full 32-bit UID space

3

Let’s make k{u,g}id_t to be 64bit

4

kuid_t: (uid, user_ns_id)

non-isolated: (*, 0) isolated: (*, uns_id != 0)

Mapping procedure (setuid syscall)

5

UID (from userspace) make_kuid

current_user_ns()

yes

no

kuid_t: (host_mapped_uid, 0)

kuid_t: (uid, uns_id)

User
namespace

isolated?

Does user
namespace

have a
mapping for

this UID?

yes

no

EINVAL

Inverse mapping procedure (getuid syscall)

6

kuid_t (from kernel) from_kuid

current_user_ns()

no

yes

kuid_t: (user_ns_mapped_uid, 0)

(kuid_t).uid

User
namespace

isolated AND
user

namespace
ID == uns_id
in the kuid_t

value

Is this kuid_t
value

represents a
“isolated”

uid? ⇔
uns_id != 0 ?

yes

no

(uid_t)-1

overflowuid case

● When from_kuid() fails to map (kuid_t) back to the userspace (uid_t) type it
returns (-1)

● In many places we use from_kuid_munged() function which replaces this
(-1) with an overflowuid value (usually, 65534, but configurable through
/proc/sys/kernel/overflowuid)

● For isolated user namespace, instead of going with the overflowuid we
returning a UID of a user namespace owner

7

Problems

● Need to integrate with filesystems
○ Use VFS idmaps or container-ized filesystems
○ cgroupfs!

● Nesting
● Cross-container interaction

○ SCM_CREDENTIALS between two isolated containers

8

Why cgroupfs is so special?

● A cgroup object is a host-level thing
○ each cgroup has an owner (stored in a kernfs_iattrs structure)
○ it must be controllable from the host (and parent userns ?)

● A superblock remains the same even when cgroup namespace is used
○ ⇒ one struct inode and struct kernfs_node per cgroup

9

File system’s idmapping

● uid_t i_uid_read(const struct inode *inode)
● void i_uid_write(struct inode *inode, uid_t uid)

○ inode->i_uid = make_kuid(inode->i_sb->s_user_ns, uid)
○ There is a check that prevents writing an “unmappable” uid to the

inode->i_uid (see vfsuid_has_fsmapping() function)

10

Okay, what’s about task_struct then?

● task_struct has struct cred
○ ⇒ user namespace ⇒ we can do permission checks based on

capabilities and not UID/GIDs!
○ see, for example, kill_ok_by_cred() function

● cgroup has no creds attached to it!
○ Instead, it has struct kernfs_node which keeps k{u,g}id_t values

(through struct kernfs_iattrs)
● To conclude, for task_struct, owner UID/GIDs are not playing a fundamental

role

11

Ideas

● Attach struct cred (or struct user_namespace) to a cgroup
● Introduce a concept of multiple owners for a cgroupfs files

○ A set of kuid_t values depending on the superblock
■ We need multiple superblocks!
■ Instead of one struct kernfs_iattrs per kernfs_node we need an

array/hashtable with them
■ In the initial user namespace we take cgroup->kn->iattr[0].ia_uid

12

What can we do?

1. During a cgroup namespace creation from an isolated user namespace we
can change an ownership of a cgroup to an uid=0 in the isolated user ns

2. We need to introduce a separate (per-cgroupns) superblocks to make VFS
layer happy when user does chown() inside the user namespace to an
isolated UID/GIDs

13

Linux kernel patches

14

Thank you!
It’s time for a discussion

15

Stéphane Graber
Owner, Zabbly
stgraber@stgraber.org

Aleksandr Mikhalitsyn
Software engineer, Canonical
aleksandr.mikhalitsyn@canonical.com

Links

1. More flexible user namespaces
https://fosdem.org/2024/schedule/event/fosdem-2024-2987-more-flexible
-user-namespaces/

2. User namespaces with host-isolated UIDs/GIDs
https://lpc.events/event/17/contributions/1569/

3. Isolated dynamic user namespaces
https://lpc.events/event/7/contributions/836/

4. Simplified user namespace allocation
https://lpc.events/event/11/contributions/982/

16

https://fosdem.org/2024/schedule/event/fosdem-2024-2987-more-flexible-user-namespaces/
https://fosdem.org/2024/schedule/event/fosdem-2024-2987-more-flexible-user-namespaces/
https://lpc.events/event/17/contributions/1569/
https://lpc.events/event/7/contributions/836/
https://lpc.events/event/11/contributions/982/

