
KTAP General Tooling
"KTAP Swiss-Army Knife"
Rae Moar <rmoar@google.com>



Background on KTAP



What is KTAP?

● Test Result Format for Linux Kernel Tests
○ Find specification in kernel docs

● Been upstream since 5.17 in 2021
● Based on simple, text-based TAP
● Components of KTAP specification

○ Version Line - “KTAP version (#)”
○ Test Plan - “1..(#)”
○ Results Lines - “ok/not ok (#) - …”
○ Diagnostic Lines - “# hello_world”
○ Directives - “# SKIP”
○ Nested Tests

Example of Simple KTAP

https://docs.kernel.org/dev-tools/ktap.html


Where is KTAP now?

● Current Status: KTAP is now widely used with small differences in frameworks
● Major efforts have been made over the past few years to follow specification

kselftest ResultsKUnit Results



What is the Current Status of KTAP v2?

● KTAP version 2 is ready to go
○ Current list of compiled patches (link)

● KTAP Metadata has been approved for KTAP version 2
○ As discussed at last LPC
○ Framework for outputting supplemental test information (test speed, module 

name, etc.)
● Method of accepting patches unclear

○ Potential plan to bring accepted patches in via KUnit

https://elinux.org/Test_Results_Format_Notes#KTAP_version_2


Current KTAP Tooling



Current KTAP Tooling

● Parsers
○ Plain KTAP docs can be dense and hard to find in 

kernel output
○ Simple parsers that check for "ok"/"not ok"
○ KUnit Parser outputs a pretty-print with a 

human-readable summary
○ Other framework-specific parsers

● Hidden features within current parsers
○ Summary lines
○ Isolate KTAP documents
○ Compile lists of attributes and metadata

● Overall: Framework-specific, not modular

Example of KUnit Parser Results



Discussion on KTAP Tooling

What is our current system doing well?

● Tooling has greatly improved the experience working with KTAP (especially 
parsers)

● Fulfills framework-specific needs

What can be improved?

● Decentralized so there is redundancy in code
○ Not being shared between frameworks

● Not visible
○ Are people aware of the current available tooling?

● We can do more!
○ Other tools may be useful (converters, splitters), where should these be located?



KTAP General Tooling



KTAP General Tooling

● Proposal: Create a new library with common KTAP tooling to be used by 
multiple frameworks
○ Common parser as well as additional tools

● Objective: "Swiss-Army Knife" All Your Favorite Tools in One Place
○ Reduce redundancy
○ Increase visibility of KTAP tooling
○ Reinforce specification

● Where?
○ Located at new directory tools/testing/ktap
○ Written in python with command-line interface or ability to directly use methods



What can it do?
● Parser

○ To isolate and output KTAP results in a pretty-print human-readable format (based on KUnit current 
parser)

○ Compliant with current KUnit and kselftest outputs

● Isolator
○ To filter out non-KTAP in output from Kernel log

● Splitter/Combiner
○ To split multiple KTAP documents into individuals or to combine KTAP documents into one

● Summarizer
○ To produce a summary line of results from KTAP documents

● Converters 
○ To convert KTAP to another format
○ Currently considering JSON and JUnit XML
○ This could be used to upload results to a CI system



Example of Combiner



Parser
Output of kselftest results passed into current KUnit parser

*with small to tweak to allow for "# " indentation

kselftest Results Parser Output



Discussions on KTAP General Tooling

Pros

● Frameworks can share resources and 
removes redundancy in tooling

● One library will reinforce one common 
understanding of the KTAP specification

● Makes KTAP tooling more accessible and 
visible to kernel developers

● Incentivises new KTAP tooling features by 
creating a space for it

Cons

● Disincentives framework-specific parsing 
and other tooling

● Creates a new tooling library to be 
maintained

● Potentially more disagreement on 
development decisions (more players to 
get approval)



Open Questions



Open Questions

● Would this new library be useful? Are people interested in it?

● Specifically, would kselftest be interested in using any of the potential 

features including the parser?

● Which features are people interested in from those listed and any ideas 

for additional features?

● Are there changes to the KTAP specification that could improve the 

transition to using this general tooling?


