

ISA extension
management/enablement in

heterogeneous systems
Andrew Jones <ajones@ventanamicro.com>

Overview

● What type of heterogeneous systems are we talking about?

● Challenges with considering those types of heterogeneous systems

● Discussion

Heterogeneous systems

● Types of heterogeneous systems

○ CPUs integrated with coprocessors (GPUs, NPUs, other accelerators…)
■ Run on “main” cores and schedule specific workloads on coprocessors
■ Not in the scope of this discussion

○ Single-ISA: CPUs integrated together which have identical ISA but differ in characteristics affecting power consumption
■ Potentially different clock frequencies, cache sizes, etc.
■ Mostly not in the scope of this discussion

○ Overlapping-ISA: CPUS integrated together which have overlapping, but not identical ISA
■ Example: Some Arm SoCs only have the AArch32 feature on a subset of cores
■ The main focus of this discussion

Challenges with considering overlapping-ISA heterogeneous systems

kernel
● Available vs. enabled extensions

○ Enabled may additionally require
■ Compiler support
■ Kconfig=y
■ Both compiler support and Kconfig=y
■ Other dependencies checked at

detection time and/or at alternative
patching time

● Must check enabled hart-common
extensions
○ Otherwise alternatives would be

broken
○ Can’t hotplug a hart that is missing

anything from hart-common

KVM
● Checks per-hart extensions

○ Leave it to the VMM to pin VCPUs if
necessary
■ Otherwise VCPU migration would be

broken
■ Arm KVM VMM has to pin VCPUs on

big.LITTLE due to MIDR passthrough
● VMM determines supported

extensions with KVM ioctls
○ Can’t use hwprobe since KVM may

not support what hwprobe
advertises

○ No current KVM ioctl equivalent for
hwprobe’s which-cpus

usermode
● Hopefully libraries and applications

are learning to use hwprobe
● hwprobe returns the AND of the

usermode exposed per-hart
extensions for the task’s cpumask
○ hwprobe’s which-cpus allows

collecting a set of harts supporting
given extensions
■ Deepak Gupta[1] made good

arguments as to why this would be
quite difficult to do with shared
libraries and competing affinity
selections

[1]https://lore.kernel.org/all/CAKC1njRqWYOsF9bQvWX
99DhP8Ji_wDUc8J8N41=N6J_tncM3=A@mail.gmail.co
m/

Backup
(U-mode extension management)

Usermode extensions without kernel enablement

● Extensions that don’t need senvcfg bits set or other support from the kernel

● Still need to wait until kernel at least enumerates them in hwprobe?

● Or is there anyway to automatically pass their availability through?

● Or will usermode probe with test instructions and SIGILL handlers?

