
Deepak Gupta: <debug@rivosinc.com>

ISA recap “Zicfilp” - protects forward control flow

Zicfilp: Enforces all indirect branches must land on lpad (auipc rd=x0)

- Except when rs1 == (x1 | x5 | x7)
- Label setup in x7 must match label encoded in lpad instruction on target

- New exception (cause = 18) – software-check exception
- *tval = 2, missing lpad or label didn’t match

auipc rd=x0 is HINT NOP

lui x7,0x1 ← label setup in x7
jalr a5 ← expects landing pad at target foo_lpad_loc

auipc x7, <offset> ← addr of func_body_bar
jalr x7 ← No landing pad expected

foo_lpad_loc:
lpad <label>

func_body_foo:

func_body_bar: ← No label expected

2

ISA recap “Zicfiss” - protects return control flow

Zicfiss: Extends architecture with shadow stack (encoding RWX = b010)

- Regular stores not allowed. Regular loads allowed.
- Access fault on regular stores.

- Shadow stack memory accesses strictly operate on shadow stack memory
- SS access on RO memory → store page fault
- SS access on RWX or XO memory or RW memory → access fault
- sspopchk can raise software-check exception (*tval = 3)

func_main:
lpad <label>
sspush x1 ← push return address on top of shadow stack
…
…

ld x5, offset(sp) ← get return address from stack
add sp, sp, offset ← adjust stack
sspopchk x5 ← pop from top of shadow stack and compare with x5
jr x5 ← sspopchk didn’t fault. Return back

3

ISA recap “zimop” and “zcmop”

zimop : “may be operation”

- If implemented, moves 0 → rd
- Allows future CPU extensions looking for instruction encodings

- That don’t fault if feature is disabled or not implemented
- Existing spec to maintain sanity that HINT NOPs never change architectural state

- RVA23 profile mandates zimop implementation
- But zimop compiled binaries will exhibit illegal instruction on existing / old hardware

zcmop: “compressed may be operation”

- Ditto as zimop except doesn’t do 0 →rd
- Instead allows future extensions to read encoded register

Shadow stack (“zicfiss”) extension is first consumer of zimop and zcmop

More info here on zimop and zcmop

https://github.com/riscv/riscv-isa-manual/blob/main/src/zimop.adoc

Update since last time

CPU extensions (zicfilp and zicfiss) are ratified

Toolchain:

- Toolchain / gcc : Thanks to Kito and team

- Toolchain / llvm : Thanks to Ming-Li (only landing pad but this enables function signature based multi-label scheme)

Upstream status:

- Going with `VM_SHADOW_STACK` vma flag used by x86 (and ongoing arm64 series as well) : Shadow stack only on 64 bit

- User mode control enabling of feature for its entire address space (via new proposed generic prctl)

- Qemu patches for enabling zicfilp and zicfiss

- Revised kernel patches for user mode control flow integrity

- Kernel patches (RFC) for kernel control flow integrity

- Opensbi patches for zicfilp and zicfiss

5

https://github.com/sifive/riscv-gnu-toolchain/tree/cfi-dev
https://github.com/mylai-mtk/llvm-project/tree/zicfilp-func-sig-intrinsic
https://lore.kernel.org/all/20240912235320.3768582-1-debug@rivosinc.com/
https://lore.kernel.org/lkml/20240912231650.3740732-1-debug@rivosinc.com/
https://lore.kernel.org/all/20240409061043.3269676-1-debug@rivosinc.com/
https://patchwork.ozlabs.org/project/opensbi/list/?series=424156

Opens / Discussion

- Shadow stack instructions come from zimop encodings

- Kernel doesn’t know if target CPU has zimop

6

- Label setup in t2/x7 must match label embedded in lpad

- All exec objects in address space *must* have same label
scheme

- Compiled vDSO also must have same label scheme

vDSO management Landing pad label scheme

vDSO management

Options

- Patch vDSO in runtime: Too cumbersome and flaky

- Follow RISC-V profiles and build vDSO based on that: No profile awareness as of today

- Carry two vDSO, one with zimop and one without: Small size, doable
- Some future CPU extensions might also take some of the zimop encodings (e.g. memory tagging).
- Only need to add one more compile command-line for vDSO generation

- Once kernel is compiled with shadow stack support (or any zimop instruction encoding)
- Start carrying a single vDSO again

7

Landing pad label scheme

Zero label scheme: lpad #0
- Embedding of 0 in lpad means label check is bypassed
- Simple and can be easily adopted
- *But* any callsite can reach any target and thus much coarser grained cfi

8

Multi-label scheme: lpad
#imm_label_func_sign_trunc_20bit
- Using 20 bit truncated hash of function signature as label

value
- A callsite can only go to target locations with matching

function prototype: finer grained cfi
- Func signature multi-label scheme is somewhat similar to

FineIBT (in upstream) for x86 linux kernel

Yes there are some difficulties with multi-label scheme

- But nothing which can’t be solved
- More discussion on mitigating these difficulties on this

pull request on psABI for multi-label scheme: Thanks to
Kito, Ming-Li & many others

https://lore.kernel.org/lkml/202407150933.E1871BE@keescook/
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/434

Landing pad label scheme – real problem

Real problem actually is possibly of existence of more than *one* labeling scheme

- An executable object compiled with one label scheme can’t indirectly call into object with different label scheme
- More than one labeling scheme leads to fragmentation in package / library management (not to mention vDSO management)
- In practice, only one label scheme will be used
- Landing pad enabling in conjunction with shadow stack enabling → New binaries with zimop dependency

- Mixing of legacy binaries only possible on machines with zimop enabled hardware (doesn’t exist today)
- zimop enabled binaries can’t run on old hardware

- Allows a clean break from old CPUs → new CPUs

Use the opportunity and enable multi-label scheme

Discussion & Question

