
1

Towards common 
mainline device testing

Nícolas F. R. A. Prado

LPC 2024



2

Motivation
● Large fraction of code base comes from devices
● Device regressions affect system functionality
● Covering everything requires subsystem-specific testing
● Testing generic device framework is simpler and yet fruitful
● Goal: detect regressions through generic device layer
● Objectives:

– Minimum (ideally none) false-positives

– Minimum maintenance



3

Generic device testing status
● Areas that have had tests submitted for:

– Probe

● DT kselftest, ACPI kselftest, Discoverable bus (USB/PCI) kselftest

– Device error logs

● Error log kselftest

– Existence in /sys/bus/ or /sys/class/

● Device existence kselftest

● Other areas?

https://lore.kernel.org/all/20230828211424.2964562-1-nfraprado@collabora.com/
https://lore.kernel.org/all/20240308144933.337107-1-laura.nao@collabora.com/
https://lore.kernel.org/all/20240122-discoverable-devs-ksft-v4-0-d602e1df4aa2@collabora.com/
https://lore.kernel.org/all/20240705-dev-err-log-selftest-v2-0-163b9cd7b3c1@collabora.com/
https://lore.kernel.org/all/20240724-kselftest-dev-exist-v1-1-9bc21aa761b5@collabora.com/


4

Device existence kselftest
● Currently an RFC on the list:

– https://lore.kernel.org/all/20240724-kselftest-dev-exist-v1-1-

9bc21aa761b5@collabora.com/
● Two steps:

– Reference generation

– Validation against reference



5

Reference generation
● Run with --generate-reference

on known-good kernel
● Device snapshot will

be generated to YAML file:
● Reference will be stored out-of-tree

in
kernelci/platform-test-parameters

https://github.com/kernelci/platform-test-parameters


6

Validation against ref.
● Run without

 --generate-reference
● Missing devices will cause failure

– Based on device count on bus/class
● Failure example:



7

Open questions / gather feedback
● Is there any device property that is safe to match? (ie stable)
● Should probe also be checked? (What if it changes?)
● More identifying properties?

– Currently: uevent, device/uevent, firmware_node/uevent and name

● More buses/classes to ignore? Currently: devlink

● Better way to ignore non-devices in /sys/class than 

checking for symlink?



8

Open questions / gather feedback (2)
● How to best select appropriate reference file?

– Currently: system ID (DT compatible or DMI). Possibilities: kernel version, kernel 

config

● Better format for the reference file? Currently: YAML



9

Thank you!



10

We are hiring
col.la/careers

http://col.la/careers


11

Stability of device properties
● E.g.: ChromeOS EC backlight device
● Sysfs path (unstable):

– /sys/devices/platform/soc/1100a000.spi/spi_master/spi0/spi0.0/cros-ec-

dev.2.auto/cros-keyboard-leds.13.auto/leds/chromeos\:\:kbd_backlight/
● Uevent (unstable?):

– DEVTYPE=mfd_device

DRIVER=cros-keyboard-leds

MODALIAS=platform:cros-keyboard-leds



12

Stability of device properties (2)
● Class path (stable-ish?):

– /sys/class/leds/chromeos\:\:kbd_backlight/

● Lack of docs on device properties in Documentation/ABI

● What would break userspace?
– light & brightnessctl use only name in class path

● But suffix can be added in case of name clash



13

DT kselftest
● Skip compatibles that

don’t match any driver
● Fail on unprobed devices



14

Discoverable bus kselftest
● Reference files written by hand

– Describes HW path to devices on USB or PCI bus

● Test checks device exists and probed
● Example google,tomato.yaml:



15

Error Log
kselftest


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

