
Measuring and Understanding
Linux Kernel Tests

Tingxu Ren
Wentao Zhang, Jinghao Jia, Darko Marinov, Tianyin Xu

1

Whoami

• An undergraduate student interested in Linux
• Working on a summer project on kernel testing at UIUC
• This is my first time giving a conference talk

2

Motivation and Goals

● Modernizing Linux kernel testing (e.g., CI for Linux)

● High-coverage, effective test cases
○ Incremental changes can be well tested

● Test selection and prioritization (and minimization)
○ Only a small number of tests need to be run
○ First running tests that are more likely to find bugs

● Bug localization and reproducibility
○ Localizing bugs when tests fail
○ Reproducing the bug by rerunning the tests

3

How far are we?
What should be done?

How can we contribute?

4

Commonly Used Test Suites

● KUnit
○ Aiming at drivers and common data structures (list, string, sort)

● Kselftest
○ A set of developer unit and regression tests

● LTP (Linux Test Project)
○ A comprehensive suite of user-space tests

● Module-specific tests
○ e.g. xfstests, blktests, kvm-unit-tests, device tests

● RHEL test suites
○ Very large test suite including LTP , KUnit, stess-ng, xfstests, etc.
○ Many tests target on preinstalled packages in the distro

 Kernel space
 User space
 Combo

5

We focus on test suites used by KernelCI

● KernelCI native tests only contain kselftest and LTP
● We focus on studying the following test suites

○ Booting the kernel (linux v6.9.8)
○ KUnit (linux v6.9.8)
○ LTP (20240524)
○ Kselftest (linux v6.9.8)

● A future work is to add syscall fuzzers like Syzcallar
○ Didn’t get the chance to run
○ May not be suitable for CI testing

6

Setup and Configuration

● Kernel version 6.9.8
● defconfig for x86_64, along with:

○ LLVM coverage tool
○ KUnit tests
○ Ethernet driver

● LLVM 19.0.0
○ Metrics: Function, line, branch and MC/DC coverage

● Cloudlab c6420 machine
○ Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz
○ 251GB memory, 8GB swap.

7

Source-based Code Coverage (SCC)

● Provides precise, source-based coverage reports
○ Instrumentation happens at the frontend
○ Dedicated coverage mapping regions

● Not susceptible to compiler optimization
○ Optimization is enabled by default when building the kernel, which

often confuses existing coverage tools
● More informative when evaluating test suites
● Kernel support is publicly requesting for comments

8

https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Source-based Code Coverage (SCC)

● Provides precise, source-based coverage reports
○ Instrumentation happens at the frontend
○ Dedicated coverage mapping regions

● Not susceptible to compiler optimization
○ Optimization is enabled by default when building the kernel, which

often confuses existing coverage tools
● More informative when evaluating test suites
● Kernel support is publicly requesting for comments

“Source-based code coverage of Linux kernel” by Wentao Zhang
Safe Systems with Linux MC, today 16:00, Hall N2 (Austria Center)

9

https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Overall Coverage (Boot + KUnit + Kselftest + LTP)
Module Function Line Branch MC/DC

arch/x86/ 48.69% (2841/5835) 38.09% (26249/68913) 28.81% (11708/40634) 8.87% (276/3113)

block/ 55.37% (810/1463) 42.63% (8357/19603) 31.26% (3324/10634) 13.24% (121/914)

certs/ 57.14% (4/7) 50.00% (49/98) 36.67% (11/30) 0.00% (0/2)

crypto/ 28.95% (264/912) 24.05% (3009/12512) 19.12% (825/4314) 3.41% (14/411)

drivers/ 19.76% (6624/33524) 15.70% (93231/593941) 10.86% (31926/293880) 3.32% (919/27720)

fs/ 56.65% (4798/8469) 46.93% (71736/152866) 38.20% (26443/69222) 19.90% (1260/6331)

include/ 43.29% (5866/13550) 35.29% (24777/70214) 38.88% (5801/14920) 17.95% (300/1671)

init/ 53.28% (65/122) 45.80% (775/1692) 31.60% (201/636) 9.30% (8/86)

io_uring/ 34.55% (255/738) 23.24% (2738/11782) 14.09% (870/6174) 0.46% (3/657)

ipc/ 79.94% (247/309) 73.24% (3898/5322) 61.10% (1233/2018) 37.58% (56/149)

kernel/ 69.64% (5692/8173) 58.66% (64531/110009) 44.61% (24851/55712) 26.29% (1440/5477)

lib/ 61.17% (1624/2655) 51.94% (23346/44949) 34.81% (11123/31954) 23.34% (345/1478)

mm/ 76.42% (2483/3249) 65.82% (35656/54171) 52.13% (14463/27742) 30.11% (812/2697)

net/ 36.89% (4876/13217) 25.87% (71023/274552) 17.58% (27168/154540) 6.13% (966/15747)

security/ 54.58% (751/1376) 35.07% (8237/23485) 28.84% (3449/11958) 11.92% (98/822)

sound/ 14.05% (235/1673) 11.09% (2972/26793) 7.56% (979/12956) 1.21% (15/1240)

Totals 39.29% (37435/95272) 29.95% (440584/1470902) 22.29% (164375/737324) 9.68% (6633/68515)

Overall Coverage (Boot + KUnit + Kselftest + LTP)
Module Function Line Branch MC/DC

Totals 39.29% (37435/95272) 29.95% (440584/1470902) 22.29% (164375/737324) 9.68% (6633/68515)

Overall Coverage (Boot + KUnit + Kselftest + LTP)
Line

38.09% (26249/68913)
42.63% (8357/19603)
50.00% (49/98)
24.05% (3009/12512)

drivers/ 15.70% (93231/593941)
46.93% (71736/152866)
35.29% (24777/70214)
45.80% (775/1692)
23.24% (2738/11782)

ipc/ 73.24% (3898/5322)
58.66% (64531/110009)
51.94% (23346/44949)

mm/ 65.82% (35656/54171)
25.87% (71023/274552)
35.07% (8237/23485)

sound/ 11.09% (2972/26793)
29.95% (440584/1470902)

Mostly ≤ 60%

Increase of Coverage (KUnit alone)
Module Function Line Branch MC/DC

arch/x86/ ↑ 1.20% (↑ 70/ 5835) ↑ 1.17% (↑ 807/ 68913) ↑ 0.91% (↑ 369/ 40634) ↑ 0.13% (↑ 4/ 3113)

block/ ↑ 0.61% (↑ 9/ 1463) ↑ 0.51% (↑ 100/ 19603) ↑ 0.58% (↑ 61/ 10634) ↑ 0.55% (↑ 5/ 914)

certs/ ---% (---/ 7) ---% (---/ 98) ---% (---/ 30) ---% (---/ 2)

crypto/ ---% (---/ 912) ---% (---/ 12512) ---% (---/ 4314) ---% (---/ 411)

drivers/ ↑ 2.72% (↑ 912/ 33524) ↑ 2.31% (↑13694/ 593941) ↑ 1.77% (↑ 5207/ 293880) ↑ 0.56% (↑ 154/ 27720)

fs/ ↑ 1.03% (↑ 88/ 8467) ↑ 0.94% (↑ 1477/ 152759) ↑ 0.76% (↑ 542/ 69178) ↑ 0.44% (↑ 28/ 6325)

include/ ↑ 1.91% (↑ 259/ 13550) ↑ 1.88% (↑ 1320/ 70214) ↑ 2.64% (↑ 394/ 14920) ↑ 1.91% (↑ 32/ 1671)

init/ ---% (---/ 122) ---% (---/ 1692) ---% (---/ 636) ---% (---/ 86)

io_uring/ ---% (---/ 738) ---% (---/ 11782) ---% (---/ 6174) ---% (---/ 657)

ipc/ ---% (---/ 309) ---% (---/ 5322) ---% (---/ 2018) ---% (---/ 149)

kernel/ ↑ 3.79% (↑ 310/ 8173) ↑ 3.31% (↑ 3641/ 110009) ↑ 2.55% (↑ 1423/ 55712) ↑ 0.88% (↑ 48/ 5477)

lib/ ↑19.62% (↑ 521/ 2655) ↑17.04% (↑ 7661/ 44949) ↑15.24% (↑ 4871/ 31954) ↑ 5.34% (↑ 79/ 1478)

mm/ ↑ 1.65% (↑ 54/ 3248) ↑ 1.16% (↑ 636/ 54160) ↑ 0.95% (↑ 265/ 27738) ↑ 0.82% (↑ 22/ 2697)

net/ ↑ 1.19% (↑ 158/ 13217) ↑ 1.28% (↑ 3539/ 274552) ↑ 0.98% (↑ 1508/ 154540) ↑ 0.40% (↑ 63/ 15747)

security/ ↑ 0.44% (↑ 6/ 1376) ↑ 0.19% (↑ 43/ 23485) ↑ 0.23% (↑ 28/ 11958) ↑ 0.12% (↑ 1/ 822)

sound/ ↑ 2.63% (↑ 44/ 1673) ↑ 1.75% (↑ 467/ 26793) ↑ 1.54% (↑ 200/ 12956) ↑ 0.65% (↑ 8/ 1240)

Totals ↑ 2.55% (↑ 2431/ 95269) ↑ 2.26% (↑33385/1470784) ↑ 2.01% (↑14868/ 737276) ↑ 0.65% (↑ 444/ 68509)

Increase of Coverage (KUnit alone)
Module Function Line Branch MC/DC

drivers/ ↑ 2.72% (↑ 912/ 33524) ↑ 2.31% (↑13694/ 593941) ↑ 1.77% (↑ 5207/ 293880) ↑ 0.56% (↑ 154/ 27720)

lib/ ↑19.62% (↑ 521/ 2655) ↑17.04% (↑ 7661/ 44949) ↑15.24% (↑ 4871/ 31954) ↑ 5.34% (↑ 79/ 1478)

sound/ ↑ 2.63% (↑ 44/ 1673) ↑ 1.75% (↑ 467/ 26793) ↑ 1.54% (↑ 200/ 12956) ↑ 0.65% (↑ 8/ 1240)

A Few Very High-level Observations

15

A Few Very High-level Observations

● The coverage of kernel tests is far from adequate
○ Especially compared with modern (user-space) software projects
○ MC/DC is particularly low (<10%) – long way to go as safe systems

16

A Few Very High-level Observations

● The coverage of kernel tests is far from adequate
○ Especially compared with modern (user-space) software projects
○ MC/DC is particularly low (<10%) – long way to go as safe systems

● User-space tests (LTP/Kselftest) are ineffective in testing drivers
○ LTP(2,440 tests) performs even weaker than KUnit (596 tests)

17

A Few Very High-level Observations

● The coverage of kernel tests is far from adequate
○ Especially compared with modern (user-space) software projects
○ MC/DC is particularly low (<10%) – long way to go as safe systems

● User-space tests (LTP/Kselftest) are ineffective in testing drivers
○ LTP(2,440 tests) performs even weaker than KUnit (596 tests)

● The higher covered modules are mostly less than 60% (line cov.)
○ Branch coverage is much lower

18

A Few Very High-level Observations

● The coverage of kernel tests is far from adequate
○ Especially compared with modern (user-space) software projects
○ MC/DC is particularly low (<10%) – long way to go as safe systems

● User-space tests (LTP/Kselftest) are ineffective in testing drivers
○ LTP(2,440 tests) performs even weaker than KUnit (596 tests)

● The higher covered modules are mostly less than 60% (line cov.)
○ Branch coverage is much lower

● Certain subsystems (e.g., init and certs) is rarely covered
○ Makes boot-time bugs hard to detect early and causes trouble in debugging

19

Overall Coverage (Boot + KUnit + Kselftest + LTP)
Module Function Line Branch MC/DC

arch/x86/ 48.69% (2841/5835) 38.09% (26249/68913) 28.81% (11708/40634) 8.87% (276/3113)

block/ 55.37% (810/1463) 42.63% (8357/19603) 31.26% (3324/10634) 13.24% (121/914)

certs/ 57.14% (4/7) 50.00% (49/98) 36.67% (11/30) 0.00% (0/2)

crypto/ 28.95% (264/912) 24.05% (3009/12512) 19.12% (825/4314) 3.41% (14/411)

drivers/ 19.76% (6624/33524) 15.70% (93231/593941) 10.86% (31926/293880) 3.32% (919/27720)

fs/ 56.65% (4798/8469) 46.93% (71736/152866) 38.20% (26443/69222) 19.90% (1260/6331)

include/ 43.29% (5866/13550) 35.29% (24777/70214) 38.88% (5801/14920) 17.95% (300/1671)

init/ 53.28% (65/122) 45.80% (775/1692) 31.60% (201/636) 9.30% (8/86)

io_uring/ 34.55% (255/738) 23.24% (2738/11782) 14.09% (870/6174) 0.46% (3/657)

ipc/ 79.94% (247/309) 73.24% (3898/5322) 61.10% (1233/2018) 37.58% (56/149)
kernel/ 69.64% (5692/8173) 58.66% (64531/110009) 44.61% (24851/55712) 26.29% (1440/5477)

lib/ 61.17% (1624/2655) 51.94% (23346/44949) 34.81% (11123/31954) 23.34% (345/1478)

mm/ 76.42% (2483/3249) 65.82% (35656/54171) 52.13% (14463/27742) 30.11% (812/2697)

net/ 36.89% (4876/13217) 25.87% (71023/274552) 17.58% (27168/154540) 6.13% (966/15747)

security/ 54.58% (751/1376) 35.07% (8237/23485) 28.84% (3449/11958) 11.92% (98/822)

sound/ 14.05% (235/1673) 11.09% (2972/26793) 7.56% (979/12956) 1.21% (15/1240)

Totals 39.29% (37435/95272) 29.95% (440584/1470902) 22.29% (164375/737324) 9.68% (6633/68515)

ipc/

● Small, simple subsystem (12 files, 5322 lines in total)
● Extensively exercised by existing tests (especially LTP)

○ Line coverage: 73.2%
○ Branch coverage: 61.0%

21

ipc/

● Small, simple subsystem (12 files, 5322 lines in total)
● Extensively exercised by existing tests (especially LTP)

○ Line coverage: 73.2%
○ Branch coverage: 61.0%

● What code are not covered by existing tests?
○ Missing usages
○ Error path
○ Execution context (e.g., privileged or not)
○ 32-bit compatibility

22

Missing Usages

● POSIX message queue messages can have different priorities

● Code about RB-tree search is not covered
○ Implying that only one priority is used in each test case

202 90 if (likely(leaf->priority == msg->m_type))
203 90 goto insert_msg;
204 0 else if (msg->m_type < leaf->priority) {

Branch (204:12): [True: 0, False: 0]
205 0 p = &(*p)->rb_left;
206 0 rightmost = false;
207 0 } else
208 0 p = &(*p)->rb_right; /ipc/mqueue.c

mq_send
unsigned int msg_prio);

Error Path

● Error handling code spread all over the kernel code
○ Validity check followed by cleanup code
○ Assignment of errno and return

● Covering all errno of a syscall != covering all error paths

556 13 if (!ipc_valid_object(&msq->q_perm)) {
Branch (556:6): [True: 0, False: 13]

557 0 ipc_unlock_object(&msq->q_perm);
558 0 err = -EIDRM;
559 0 goto out_unlock;
560 0 } /ipc/msg.c

24

Enhancing Existing Tests

● Which tests to enhance (among hundreds)?
○ Tests that already exercise the target functions/statements

● Tooling for finding tests based on coverage data
1. Compile the kernel with only target modules instrumented
2. Run test suite and record per-test profiles
3. Select tests based on the coverage data (e.g., function and statements)

25

Enhancing Existing Tests

● Which tests to enhance (among hundreds)?
○ Tests that already exercise the target functions/statements

● Tooling for finding tests based on coverage data
1. Compile the kernel with only target modules instrumented
2. Run test suite and record per-test profiles
3. Select tests based on the coverage data (e.g., function and statements)

● Let’s see a demo.

26

Overall Coverage (Boot + KUnit + Kselftest + LTP)
Module Function Line Branch MC/DC

arch/x86/ 48.69% (2841/5835) 38.09% (26249/68913) 28.81% (11708/40634) 8.87% (276/3113)

block/ 55.37% (810/1463) 42.63% (8357/19603) 31.26% (3324/10634) 13.24% (121/914)

certs/ 57.14% (4/7) 50.00% (49/98) 36.67% (11/30) 0.00% (0/2)

crypto/ 28.95% (264/912) 24.05% (3009/12512) 19.12% (825/4314) 3.41% (14/411)

drivers/ 19.76% (6624/33524) 15.70% (93231/593941) 10.86% (31926/293880) 3.32% (919/27720)

fs/ 56.65% (4798/8469) 46.93% (71736/152866) 38.20% (26443/69222) 19.90% (1260/6331)

include/ 43.29% (5866/13550) 35.29% (24777/70214) 38.88% (5801/14920) 17.95% (300/1671)

init/ 53.28% (65/122) 45.80% (775/1692) 31.60% (201/636) 9.30% (8/86)

io_uring/ 34.55% (255/738) 23.24% (2738/11782) 14.09% (870/6174) 0.46% (3/657)

ipc/ 79.94% (247/309) 73.24% (3898/5322) 61.10% (1233/2018) 37.58% (56/149)

kernel/ 69.64% (5692/8173) 58.66% (64531/110009) 44.61% (24851/55712) 26.29% (1440/5477)

lib/ 61.17% (1624/2655) 51.94% (23346/44949) 34.81% (11123/31954) 23.34% (345/1478)

mm/ 76.42% (2483/3249) 65.82% (35656/54171) 52.13% (14463/27742) 30.11% (812/2697)
net/ 36.89% (4876/13217) 25.87% (71023/274552) 17.58% (27168/154540) 6.13% (966/15747)

security/ 54.58% (751/1376) 35.07% (8237/23485) 28.84% (3449/11958) 11.92% (98/822)

sound/ 14.05% (235/1673) 11.09% (2972/26793) 7.56% (979/12956) 1.21% (15/1240)

Totals 39.29% (37435/95272) 29.95% (440584/1470902) 22.29% (164375/737324) 9.68% (6633/68515)

mm/

● 10+ times bigger module than /ipc
○ 54,171 statements and 3,249 functions

● Many features cannot be directly invoked by system calls
○ Transparent huge pages (THP)

● Behaviors may depend on memory layouts

● Complex multi-threading concurrency

28

mm/

● 10+ times bigger module than /ipc
○ 54,171 statements and 3,249 functions

● Many features cannot be directly invoked by system calls
○ Transparent huge pages (THP)

● Behaviors may depend on memory layouts

● Complex multi-threading concurrency

● Few existing tests targeting THP
○ 0 in KUnit
○ 1 in Kselftest as a stress test to exhaust physical memory
○ 4 regression tests to prevent old bugs 29

Allocating a Huge Page

1. Read lock
2. Scan

○ check availability

3. Read unlock
4. Allocate a huge page
5. Write lock
6. Isolate

○ recheck availability

7. Copy and other work
8. Write unlock

30

Allocating a Huge Page

2. Scan
○ check availability static int hpage_collapse_scan_pmd(...)

{
...
for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;

_pte++, _address += PAGE_SIZE) {
...

1.57M if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
++none_or_zero;

133k if(... none_or_zero <= khugepaged_max_ptes_none)) {
133k continue;
133k } else {
238 result = SCAN_EXCEED_NONE_PTE;
238 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
238 goto out;
238 } 31

{
238 result = SCAN_EXCEED_NONE_PTE;
238 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
238 goto out;
238 }

Allocating a Huge Page

2. Scan
○ check availability

32

238 result = SCAN_EXCEED_NONE_PTE;
238 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
238 goto out;
238 }

static int hpage_collapse_scan_pmd(...)

Allocating a Huge Page

2. Scan
○ check availability

33

Allocating a Huge Page

6. Isolate
○ recheck availability

static int __collapse_huge_page_isolate(...)
{

...
1.19M for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1.19M _pte++, _address += PAGE_SIZE) {

...
1.19M if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1.18M ++none_or_zero;
2.60k if(... none_or_zero <= khugepaged_max_ptes_none)) {
2.60k continue;
2.60k } else {
0 result = SCAN_EXCEED_NONE_PTE;
0 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
0 goto out;
0 }

static int hpage_collapse_scan_pmd(...)
238 result = SCAN_EXCEED_NONE_PTE;
238 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
238 goto out;
238 }

34

Allocating a Huge Page

6. Isolate
○ recheck availability

{
0 result = SCAN_EXCEED_NONE_PTE;
0 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
0 goto out;
0 }

static int hpage_collapse_scan_pmd(...)
238 result = SCAN_EXCEED_NONE_PTE;
238 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
238 goto out;
238 }

35

Use Kprobe to change memory states

4. Allocate a huge page

● We can change the memory status during step 4
1087 static int collapse_huge_page(...)
1090 {

...
1110 mmap_read_unlock(mm); ...
1112 result = alloc_charge_hpage(&hpage, mm, cc);
1113
1114
1115

if (result != SCAN_SUCCEED)
goto out_nolock;

...
1116 mmap_read_lock(mm);

36

Use Kprobe to change memory states

4. Allocate a huge page

● We can change the memory status during step 4

● Use kprobe to insert code before line 1112

1087 static int collapse_huge_page(...)
1090 {

...
1110 mmap_read_unlock(mm); ...
1112 result = alloc_charge_hpage(&hpage, mm, cc);
1113
1114
1115

if (result != SCAN_SUCCEED)
goto out_nolock;

...
1116 mmap_read_lock(mm);

37

Summary and Implications

● Existing kernel tests need to be enhanced

● Many opportunities to enhancing existing tests
○ Coverage measure can guide the enhancement

● New mechanisms are needed beyond system calls
○ e.g., THP and other event-triggering code

● Existing tooling is quite rudimentary
○ No test selection or analysis
○ Debugging is nontrivial and often challenging

38

Test Coverage and Bugs
Module Description Type

1 mm/vmalloc Fix return value of vb_alloc if size is 0 Uncovered (function)

2 mm/hugetlb Fix missing hugetlb_lock for resv uncharge Uncovered (function)

3 mm/madvise Make MADV_POPULATE_(READ|WRITE) handle VM_FAULT_RETRY
properly

Uncovered (function)

4 x86/mm/pat Fix VM_PAT handling in COW mappings Uncovered (function)

5 mm/vmalloc Fix vmalloc which may return null if called with __GFP_NOFAIL Uncovered (branch)

6 mm/hugetlb Fix DEBUG_LOCKS_WARN_ON(1) when dissolve_free_hugetlb_folio() Uncovered (branch)

7 mm/hugetlb Check for anon_vma prior to folio allocation Uncovered (line)

8 maple_tree Fix mas_empty_area_rev() null pointer dereference Uncovered (execution)

9 mm Use memalloc_nofs_save() in page_cache_ra_order() Concurrency

10 mm Turn folio_test_hugetlb into a PageType Concurrency

11 fork Defer linking file vma until vma is fully initialized Concurrency

39

Gaps and Opportunities

Linux kernel tests Advanced software tests

Unit tests 596 in KUnit with low coverage Hundreds to thousands with high
code coverage

Test selection None Widely used and many regression
test selection algorithms

Test prioritization None Many algorithms but not too widely
used.

Continuous
integration

KernelCI, continuously running a
few test suites

Frequent, incremental testing on
every diff with test selection

Bug localization
and repair Manual, often difficult Many algorithms and advances,

leveraging ML/LLMs

40

Discussion

● How can we (from academia) help and contribute?
● What are the important, urgent (research) problems?

“Measuring and Understanding Linux Kernel Tests”
Kernel Testing & Dependability MC

“Making Linux Fly: Towards a Certified Linux Kernel”
Refereed Track

“Source-based code coverage of Linux kernel”
Safe Systems with Linux MC, today 16:00, Hall N2 (Austria Center)

41

	Measuring and Understanding Linux Kernel Tests
	Whoami
	Motivation and Goals
	How far are we?
	Commonly Used Test Suites
	We focus on test suites used by KernelCI
	Setup and Configuration
	Source-based Code Coverage (SCC)
	Source-based Code Coverage (SCC)
	Overall Coverage (Boot + KUnit + Kselftest + LTP)
	Overall Coverage (Boot + KUnit + Kselftest + LTP)
	Overall Coverage (Boot + KUnit + Kselftest + LTP)
	Increase of Coverage (KUnit alone)
	Increase of Coverage (KUnit alone)
	A Few Very High-level Observations
	A Few Very High-level Observations
	A Few Very High-level Observations
	A Few Very High-level Observations
	A Few Very High-level Observations
	Overall Coverage (Boot + KUnit + Kselftest + LTP)
	ipc/
	ipc/
	Missing Usages
	Error Path
	Enhancing Existing Tests
	Enhancing Existing Tests
	Overall Coverage (Boot + KUnit + Kselftest + LTP)
	mm/
	mm/
	Allocating a Huge Page
	Allocating a Huge Page
	Allocating a Huge Page
	Allocating a Huge Page
	Allocating a Huge Page
	Allocating a Huge Page
	Use Kprobe to change memory states
	Use Kprobe to change memory states
	Summary and Implications
	Test Coverage and Bugs
	Gaps and Opportunities
	Discussion

