


Tim Bird, Sony Electronics
September 20 2024

Adding Benchmark Results Support
to KTAP/kselftest



Abstract

Benchmark test results are difficult to interpret in an automated fashion. They 
often require human interpretation to detect regressions because they depend 
on a number of variables, including configuration, cpu count, processor speed, 
storage speed, memory size, and other factors. Tim proposes a new system for 
managing benchmark data and interpretation in kselftest. It consist of 3 parts: 1) 
adding syntax to KTAP to support a consistent format for benchmark values in 
KTAP/kselftest test output, 2) the use of a set of criteria, external to the test 
itself, for interpreting benchmark result values, and 3) an automated tool to 
determine and set appropriate reference values to use in the test result criteria. 
A prototype system will be demonstrated, that supports converting benchmark 
values into KTAP "ok" and "not ok" results, consumable by humans and 
automated tools (such as CI systems). This system is intended to enable the 
detection of regressions in benchmark outputs, using appropriate threshold 
values that are customizable (in an automated fashion) by a tester for their own 
configuration and hardware.



Outline

• How are benchmarks used today?
• Problems with test automation for benchmarks
• Proposed solution
• Demonstration
• Issues and optional features (for discussion)



Benchmark use today

• A human knows what the benchmark value should be
• And what variance is allowed

• The tester runs the benchmark
• The tester examines the results manually, and
• Determines if the performance has regressed or not, on their system

• The tester reports a bug
• If something changes (e.g. software, hardware, 

configuration, settings, or workload), then
• the tester relearns new benchmark reference values and variances



Rationale for supporting benchmark data

• Supporting benchmark data supports testing a whole 
range of code attributes, besides simple pass/fail
• Can test performance (speed, duration, latency, power usage, CPU 

utilization, cache hits, etc.), in addition to functionality

• But...
• Have to convert numeric data into pass/fail, for automatic detection of 

test result



Introducing Reference values

• Reference value = value used to determine the final 
result of a test (pass/fail)
• Almost always represents a threshold for a value obtained from a test
• May also include allowable variance (discussed later)

• Reference values may be kept separate from the test
• But this raises several issues



Keeping reference values separate

• Should not encode the reference value into the test itself
• This makes the test specific to one situation
• Can't share the test
• Want to use different reference values for different machines and test 

environments
• Want to report regressions on hardware that developers don't have

• As performance changes, you want to establish new 
baselines for what constitutes a regression in behavior
• Tests themselves would have to be continually updated



Issues with reference values

• How are reference values stored?
• Where are they stored?  What format is used?

• How are reference values used?
• How are reference values mapped to testcase outcomes?
• How is the correct set of reference values used?
• How are ref. values files correlated with different test environments?

• How are they generated and updated?



Proposal

New system for managing benchmark data and 
interpretation in kselftest
It consist of these parts:

1. Syntax for expressing benchmark values in KTAP/kselftest test output
2. A collection of reference values, that can be used with benchmark results
3. A set of criteria, for interpreting result values
4. A tool to convert numeric result values to pass/fail (ok/not ok) test results, 

based on the reference values and specified criteria
5. (optional) a tool to manage reference values (generate and update them)



Benchmark system objects

• Test result files in KTAP format, with:
• test result numeric values (usually with units)

• Reference values files
• reference values (with units)
• (optional) meta-data describing applicable test parameters or 

environment

• Test criteria files
• Has the mapping between (value names and reference values) to test 

result outcomes
• Has the value id, direction of comparison, units, and allowed deltas (variances)

• Results evaluation tool
• A tool or library to convert test result values to pass/fail (ok/not ok) test 

results



KTAP syntax extensions

• KTAP test value output
• KTAP undetermined testcase result



KTAP syntax extensions (cont.)

• KTAP test value output
• Syntax: "value {value_id} = {value} {units} [# {comment}]"
• Example:

• KTAP undetermined testcase result
• Used before outcome is determine by criteria processor
• Use the word "unknown" in place of "ok" or "not ok"
• Syntax: "unknown {testcase_num}  {testcase description} [# SKIP or 

diagnostic data]
• Example:

value io_4k_seq_read_speed = 78 MB/s

unknown 12 io_4k_seq_read



Reference values declarations

• Reference values
• Can be in a standalone file, or embedded in criteria lines in the criteria file
• Synax: same as the KTAP value line:
• ie. "value {value_id} = {value} {units} [# {comment}]"

• Example: value io_4k_seq_read_speed = 90 MB/s

• Reference values files:
• Consists of a list (one or more) reference values
• Each value declared with same syntax as a test results file

• Filename may reflect test name, machine identifier, or environment
• In Future: May also include meta-data about the environment for which 

the values are applicable:
• e.g. kernel version, related configs, machine, hardware, etc.



Test criteria

• Test criteria = rule for evaluating test values to generate 
test outcomes
• Each criteria references a value identifier, a reference value and testcase
• Is similar to a conditional statement
• Syntax (all on a single line):
• "if {value_name} {operator} {ref_value} {units} [+- {variance}] then    

{testcase_name}={ok|not ok}"

• example: if io_4k_write_speed < 90 MB/s then io_4k_write=not ok
• example with allowed variance:
• if io_4k_write_speed < 90 MB/s +- 5% then io_4k_write=not ok



Results evaluation tool

• Is a tool and/or library to convert values to pass/fail 
(ok/not ok) test results, based on the result values, test 
criteria, and reference values
• Two modes of operation:
• During-test mode
• Post-test mode



Results eval tool – "During-test" mode

•Operation:
• Test calls tool with an individual test value
• Tool reads the reference values and test criteria and performs the 

evaluation
• Test receives the ok/not ok outcome
• Test records outcome in the test output during test execution

• Pros and cons:
• Good: allows test to provide a value, and query the criteria and reference 

values, to get an outcome to put into the results during the test
• Bad: requires the test to call the system (including having references to 

the reference values file and criteria files)
• ie – test has to know more about its environment, file locations, etc.



Results Processing Flow (during test)

•With ref value (in dd-io-ref-bvalues-rpi4.txt) of:
• io_4k_seq_read_speed = 90 MB/s

• and criteria rule (in dd-io-criteria.txt):
• if io_4k_seq_read_speed < $ref_value then io_4k_seq_read = not ok

$ process-results.py  –e "io_4k_seq_read_speed = 78 MB/s" –n 12 \
-r dd-io-ref-values-rpi4.txt –c dd-io-criteria.txt

not ok 12 io_4k_seq_read



Results Processing tool – "Post-test" mode

•Operation:
• test: produces output with 'unknown' testcase outcomes
• process-results.py tool:
• Reads the test output (with 'value' test result lines)
• Reads the reference values and test criteria
• Writes new test output, with updated ok/not ok testcase lines

• Pros and cons:
• Good: test only has to gather data, not evaluate outcome
• Test doesn't have to know about reference values and criteria

• Bad: output may have 'unknown' outcomes temporarily
• Results are not known immediately (for example, test outcome summaries may be wrong 

until the test output is processed)



Evaluate criteria flow

•With ref value: io_4k_seq_read_speed = 90 MB/s
• and criteria rule:
• if io_4k_seq_read_speed < $ref_value then io_4k_seq_read = not ok

...
value io_4k_seq_read_speed = 78 MB/s
not ok 12 io_4k_seq_read
...

...
value io_4k_seq_read_speed = 78 MB/s
unknown 12 io_4k_seq_read
...



Evaluate criteria flow

•With ref value: io_4k_seq_read_speed = 90 MB/s
• and criteria rule:
• if io_4k_seq_read_speed < $ref_value then io_4k_seq_read = not ok

...
value io_4k_seq_read_speed = 78 MB/s
not ok 12 io_4k_seq_read
...

...
value io_4k_seq_read_speed = 78 MB/s
unknown 12 io_4k_seq_read
...



Demonstration

• This is a prototype system, that supports converting 
benchmark values into KTAP "ok" and "not ok" results
• Results are consumable by humans and automated tools 

(such as CI systems).
• System enables the detection of regressions in 

benchmark outputs
• Threshold values (reference values) are customizable by 

a tester for their own configuration and hardware



Demonstration

• dd-io test
• initcall-duration test
• spdx-headers test
• boot-marker test

• demo video at: https://youtu.be/4OoORXsZ0bs

https://youtu.be/4OoORXsZ0bs


More criteria rules info

• Allowed variance
• Rule indirection
• Rule wildcarding



Allowed variance

• Allowed variance indicates to the criteria processor that 
the threshold is "fuzzy"
• Is an optional part of a criteria rule
• Expressed as "+- {percentage}" or "+- {value} {units}"
• Examples:
• if io_4k_write_speed < 90 MB/s +- 5% then io_4k_write=not ok
• if arch_boot_duration > 100 ms +- 10 ms then arch_boot_time=not ok



Criteria rule wildcarding

• Can use wildcards to express multiple rules in a single 
line:
• if io_${size}_write_speed < $ref_value then io_${size}_write=not ok

• %{var} is replaced on both sides (in the value_id and test_id) of the 
conditional expression, when it matches a reference value name
• e.g. Can express rules for '1k', '4k', '16k' tests, etc. with a single line

• This rule works for:
• io_1k_write_speed

• io_4k_write_speed

• io_16k_write_speed



Criteria indirection

• Criteria can have in-place reference values
• if io_4k_write_speed < 90 MB/s then io_4k_write=not ok

•Or use a variable that is replaced:
• if io_4k_write_speed < $ref_value then io_4k_write=not ok

• During evaluation, $ref_value is replaced with the value 
from the ref. value file



Issues

• Need to resolve where reference value files live, and are 
maintained
• Some reference files may be able to live upstream, but likely an out-of-tree 

repository of reference value files is needed

• Need to determine if criteria files can be upstream (probably).
• In the case of in-test criteria processing, maybe the criteria can be safely 

embedded in the test itself (?)
• Some tests may only need one rule (with wildcarding)

• May need more use cases, before pinning down the syntax 
and tools and making it into a standard
• Need to write some more tests that use this, to determine how best to utilize 

these features



Issues (cont.)

• How to automatically select the appropriate set of 
reference values?
• What meta-data should be stored with reference values?
• How to match reference values to current test?
• Currently, I use a user-provided string (like a machine name)
• e.g. rpi4, beaglebone, minnowboar

•Where are test results stored, to enable reference value 
updates?
• Either automated updates, or manual with tool for assistance



Proposal Core Principles (Conclusions)

• Evaluating benchmark data supports testing a whole 
range of code attributes, besides simple pass/fail, for 
numeric values that differ widely on different systems
• Goal is to automate steps that previously required a 

human
• Standardize format of numeric benchmark data
• Support reference values separate from tests
• Create ref value sets that are specific for different test environments
• Support Criteria rules are separate from the reference values





Additional Material

• Examples
•Miscellaneous notes
• process-results.py
•Outcome reason
• results-stats.py



Examples – reference values

$ cat dd-io-ref-values-timdesk.txt

value root_seq_read_1024MB_at_4096bs_speed=1.4 GB/s
value root_seq_read_1024MB_at_16384bs_speed=1.1 GB/s
value root_seq_read_1024MB_at_65536bs_speed=1.2 GB/s

value root_seq_read_1024MB_at_100000bs_speed=1.2 GB/s
value backup_seq_read_102MB_at_4096bs_speed=55.0 MB/s
value backup_seq_read_102MB_at_16384bs_speed=57.9 MB/s
value backup_seq_read_102MB_at_65536bs_speed=57.8 MB/s

value backup_seq_read_102MB_at_100000bs_speed=58.0 MB/s



Examples – criteria rules

$ cat dd-io-criteria.txt
if ${testcase}_speed < $ref_value +- 5% then ${testcase}=not ok

$ cat initcall-duration-criteria.txt
if ${func}_duration > $ref_value +- 10% then ${func}=not ok

$ cat spdx-stuff/spdx-missing-criteria.txt
# ipc should not have any files missing spdx headers!!
if ipc_spdx_missing_count > 0 files then ipc_spdx_status=not ok

if ${dir}_spdx_missing_count > $ref_value then ${dir}_spdx_status=not ok



Miscellaneous notes

• 'variance' is not being used here in the mathematical sense of 
the term (which is the square of the std. deviation)

• Because the ref values have the same format as values, you 
can use a results file as your reference value file
• eg: symlink from spdx-test-ref-values.txt to spdx-test-results-2024-08-07.txt (a 

previous results file)

• You could also use this system to encode a set of acceptable 
testcase failures (unrelated to benchmarks)
• By treating outcome counts as benchmark data, or by directly referencing non-

numeric conditions to convert testcases to 'ok'
• example: if io_speed_not_ok_count < 4 then io_speed=ok
• example: if driver_boot_duration = not ok then driver_boot=ok



process-results.py

• input/output
• -i <input_file>     or   -e <value expr>
• -o <output_file>
• -n <testcase_num>

• file selection:
• -r <ref_value_file>
• -c <criteria file>

or
• -d <artifact_dir>
• -m <match_hint>



Outcome reason

• It's handy for humans to see the reason a test failed
• With reference values separate from test, it may not be obvious from the 

results alone why the test failed
• e.g. – what was the threshold for this value on this machine
• May want to add 'outcome reason' string to test results output

• Example:

value io_4k_seq_read_speed = 78 MB/s

# reason: io_4k_seq_read_speed < ref. value of 90 MB/s

not ok 12 io_4k_seq_read



results-stats.py

• Is a tool to process past results
• Purpose is to help determine reference values and criteria rules

• Can read KTAP results from many test runs, and output 
statistics
• min, max, avg, standard deviation, zscore

• Can omit outliers (which otherwise skew results)
• Can output verbose data, or just new a reference value 

file
• Selecting either min, max or avg values



Reference value update system - details

• Basic idea for updating reference values:
• What do humans do?
• Use knowledge of system and past results to establish threshold values for benchmark 

data

• Use past results to establish the new baseline values

• Could be as simple as:
• $ grep ^value mytest_last_output.txt >mytest-ref-values.txt
• Ratchet test = test where any improvement establishes a new baseline for 

regressions (so just collect current values and call those reference values)

•Want something a bit more formal, that can handle more 
complexity



More details

• Some tests don't output results in standardized units
• Results units may not match the ref value units
• process-criteria.py and results-stats.py can do unit conversions



End of Additional Material




	Slide 1
	Slide 2: Adding Benchmark Results Support to KTAP/kselftest
	Slide 3: Abstract
	Slide 4: Outline
	Slide 5: Benchmark use today
	Slide 6: Rationale for supporting benchmark data
	Slide 7: Introducing Reference values
	Slide 8: Keeping reference values separate
	Slide 9: Issues with reference values
	Slide 10: Proposal
	Slide 11: Benchmark system objects
	Slide 12: KTAP syntax extensions
	Slide 13: KTAP syntax extensions (cont.)
	Slide 14: Reference values declarations
	Slide 15: Test criteria
	Slide 16: Results evaluation tool
	Slide 17: Results eval tool – "During-test" mode
	Slide 18: Results Processing Flow (during test)
	Slide 19: Results Processing tool – "Post-test" mode
	Slide 20: Evaluate criteria flow
	Slide 21: Evaluate criteria flow
	Slide 22: Demonstration
	Slide 23: Demonstration
	Slide 24: More criteria rules info
	Slide 25: Allowed variance
	Slide 26: Criteria rule wildcarding
	Slide 27: Criteria indirection
	Slide 28: Issues
	Slide 29: Issues (cont.)
	Slide 30: Proposal Core Principles (Conclusions)
	Slide 31
	Slide 32: Additional Material
	Slide 33: Examples – reference values
	Slide 34: Examples – criteria rules
	Slide 35: Miscellaneous notes
	Slide 36: process-results.py
	Slide 37: Outcome reason
	Slide 38: results-stats.py
	Slide 39: Reference value update system - details
	Slide 40: More details
	Slide 41: End of Additional Material
	Slide 42

