
KUnit for Userspace
David Gow <davidgow@google.com>

mailto:davidgow@google.com

What Is KUnit?

What Is KUnit?

● A Unit Testing framework for the Linux Kernel.
● Upstream since 5.5
● Tests are written in C, run in kernel mode, and can call arbitrary kernel

functions.
● Tools to run these tests, and parse the results:

○ ./tools/testing/kunit/kunit.py run
○ Uses User-Mode Linux by default, or QEMU for other architectures.
○ ./tools/testing/kunit/kunit.py run --arch x86_64

Recent and Advanced Features

● Test-managed devices: Create a new struct device / struct device_driver
managed by KUnit

○ Devices sit on a new kunit_bus
○ Automatically cleaned up on test exit

● (Re-)run built-in tests after boot from debugfs
● Memory context support

○ kunit_vm_mmap
● A bunch of arch and documentation fixes:

○ New filename guidelines
○ Rust testing documentation and 32-bit UML support

● For the full list of changes, version by version, see
https://kunit.dev/release_notes.html

https://kunit.dev/release_notes.html

Why userspace?

Why?

● Testing in kernel-space is annoying.
○ (Even with nice tools.)
○ Userspace code is easier to run, debug, and reason about.

● Building a whole kernel just to test one function is overkill.
○ Slow build and boot process.
○ Other parts of the kernel can trigger errors: something self-contained is nice.

● Userspace code is easier to share
○ If we can reproduce a bug in userspace, it's easier to share a minimal case with non-kernel

developers.
● We have userspace code in the kernel tree we may want to test

○ tools/ directory
○ Build tools, user-facing code, etc.

Library code

● Data structures and algorithms
● Helper functions
● Parsers
● Anything 'self-contained' or 'pure'
● Code with explicit abstractions

For example:

● Rosebush:
○ https://lore.kernel.org/all/20240625211803.2750563-5-willy@infradead.org/

● Core VMA manipulation functions:
○ https://lore.kernel.org/lkml/cover.1722251717.git.lorenzo.stoakes@oracle.com/
○ Make them buildable outside the kernel.

https://lore.kernel.org/all/20240625211803.2750563-5-willy@infradead.org/
https://lore.kernel.org/lkml/cover.1722251717.git.lorenzo.stoakes@oracle.com/

Code shared between kernel and elsewhere

● There exists code, e.g. compression libraries, which are used both in
userspace and in the kernel

● Having one test framework which works for both could be nice.

Tools which live in the kernel tree

● These aren't kernel code at all, but live in the kernel tree.
○ Kernel internal APIs not available.

● Want to be relatively self-contained (minimal external dependencies), and
consistent with kernel code.

For example

● Perf
○ Has its own, vaguely KUnit-like unit testing framework
○ https://elixir.bootlin.com/linux/v6.10.1/source/tools/perf/tests/tests.h

https://elixir.bootlin.com/linux/v6.10.1/source/tools/perf/tests/tests.h

Tests which need to be shared with non-kernel folks

● Typically tests of compiler-level features
○ Useful to have these easily reproducible to send to compiler bugtrackers.

For example

● The 'stackinit' KUnit test:
○ https://lore.kernel.org/all/20220224055145.1853657-1-keescook@chromium.org/
○ Originally proposed with a standalone version.

https://lore.kernel.org/all/20220224055145.1853657-1-keescook@chromium.org/

What about…?

Why not… just use a kselftest?

● kselftest tests run from userspace, so they should be a good fit.

But:

● kselftest misses some of the unit-test specific tooling
○ Structured test functions with executor.
○ Resource management.
○ Parameterised tests

● kselftest is really aimed at testing the running kernel — this is aimed at testing
code before the kernel is built

○ Not useful for debugging the currently running kernel.
○ Still aiming for self-contained unit tests, not integration-level testing.

● Makes even less sense for tools like perf

Why not… just use an existing C/C++ unit test framework?

● There are several C Unit Test frameworks out there for userspace code, why
another one?

But:

● Can't re-use tests in user and kernel mode
○ Useful for compiler and library tests.
○ (Not for tooling tests, like perf)

● Kernel developers may be more familiar with KUnit
○ (But non-kernel developers may be

● Can share implementation, documentation, etc.
○ Using external libraries is a pain in the kernel.

Why not… just use UML (or LKL)?

● KUnit already runs in userspace via User-Mode Linux (ARCH=um).
○ (And the Linux-Kernel-Library exists as a fork to treat a UML kernel as a library)

But:

● Only works on x86 & x86_64
● Not nearly as lightweight: has to build and boot an entire kernel.
● Doesn't make sense for non-kernel tools
● This is what we're already doing…

How?

kunit.h

Implement a minimal implementation of a subset of the API as a header
replacement.

Pros:

● Super-simple. (#define kunit_log(x) printf(x), etc)
● Great for self-contained use-cases
● Easy to compile.

But:

● Missing a lot of features (or overcomplicated)
● Poor support for multi-file tests.
● Limited implementation code reuse.

KUnit 'backends'

Split out all of the kernel-specific bits of KUnit, and implement a userspace
backend.

Pros:

● Generic: can be used everywhere.
● Feature-rich: everything which makes sense outside of the kernel can be

implemented.

But:

● Where does the non-kernel code live?
○ What about the shared code?

● Lots of questions about how it would work.

Modular KUnit

Make some parts of KUnit modular enough to be used independently.

Pros:

● Can re-use code (e.g., KTAP emitter, stubbing/mocking frameworks) in
non-KUnit tests.

● Generally nice to avoid coupling.

But:

● Most KUnit code depends heavily on the struct kunit* (or worse,
current->kunit)

● Still have the problems of the above, re: non-kernel code location.

Open Questions

Is this useful?

● It's already being done in some places, so there's definitely some use.
● (We probably should at least standardise that.)

Where should it live?

● The existing include/kunit, lib/kunit directories?
● UAPI headers?
● tools/?
● Somewhere else?

● Depends on how big and complicated it gets.

Tooling to build / run / parse these?

● Lots of standalone binaries: need to know where they are.
○ Alongside code? In a separate (selftests?) directory?

● Makefile targets?
○ Just make them selftests?
○ make (thing)-test?

● Build everything into one test binary à la KUnit with UML
○ If we have the KUnit executor, this simplifies a lot.
○ Can reuse Kconfig or similar?

● Worst-case, we have kunit.py parse on results.

Documentation?

● Exactly what should be a:
○ selftest
○ (kernel-mode) KUnit test
○ (userspace) KUnit test

● Definitely some overlap.
● Documentation/dev-tools/testing-overview.rst

Plan of attack?

● Start with the minimal header and go from there?
● Start with the Perf test implementation.
● Extract a minimal version of the KUnit implementation?
● Start refactoring KUnit?

○ Mostly 'string-stream' and some other minimal use of kernel functions.

Something else?

Questions / Comments?
Or visit kunit.dev/ and subscribe to

kunit-dev@googlegroups.com

