
Coccinelle For Rust

Tathagata Roy, Julia Lawall

1

What is Coccinelle?

1. Performs repetitive transformations at a large scale
a. Rust is 1.6 MLOC
b. Linux Kernel is 23 MLOC
c. Collateral evolution - a change in the main API leads to change

in all clients

2. Provide a transformation language for expressing
these changes

3. Changes + Developer Familiarity = (semantic) patches

2

An example change (Rust repository)
commit d822b97a27e50f5a091d2918f6ff0ffd2d2827f5
Author: Kyle Matsuda <kyle.yoshio.matsuda@gmail.com>
Date: Mon Feb 6 17:48:12 2023 -0700

change usages of type_of to bound_type_of

diff --git a/compiler/rustc_borrowck/src/diagnostics/conflict_errors.rs b/compiler/.../conflict_errors.rs
@@ -2592,4 +2592,4 @@ fn annotate_argument_and_return_for_borrow(

} else {
- let ty = self.infcx.tcx.type_of(self.mir_def_id());
+ let ty = self.infcx.tcx.bound_type_of(self.mir_def_id()).subst_identity();

match ty.kind() {
ty::FnDef(_, _) | ty::FnPtr(_) => self.annotate_fn_sig(

diff --git a/compiler/rustc_borrowck/src/diagnostics/mod.rs b/compiler/.../mod.rs
@@ -1185,4 +1185,4 @@ fn explain_captures(

matches!(tcx.def_kind(parent_did), rustc_hir::def::DefKind::Impl { .. })
.then_some(parent_did)

- .and_then(|did| match tcx.type_of(did).kind() {
+ .and_then(|did| match tcx.bound_type_of(did).subst_identity().kind() {

ty::Adt(def, ..) => Some(def.did()),
...

136 files changed, 385 insertions(+), 262 deletions(-)

3

An example change (Rust repository)
commit d822b97a27e50f5a091d2918f6ff0ffd2d2827f5
Author: Kyle Matsuda <kyle.yoshio.matsuda@gmail.com>
Date: Mon Feb 6 17:48:12 2023 -0700

change usages of type_of to bound_type_of

diff --git a/compiler/rustc_borrowck/src/diagnostics/conflict_errors.rs b/compiler/.../conflict_errors.rs
@@ -2592,4 +2592,4 @@ fn annotate_argument_and_return_for_borrow(

} else {
- let ty = self.infcx.tcx.type_of(self.mir_def_id());
+ let ty = self.infcx.tcx.bound_type_of(self.mir_def_id()).subst_identity();

match ty.kind() {
ty::FnDef(_, _) | ty::FnPtr(_) => self.annotate_fn_sig(

diff --git a/compiler/rustc_borrowck/src/diagnostics/mod.rs b/compiler/.../mod.rs
@@ -1185,4 +1185,4 @@ fn explain_captures(

matches!(tcx.def_kind(parent_did), rustc_hir::def::DefKind::Impl { .. })
.then_some(parent_did)

- .and_then(|did| match tcx.type_of(did).kind() {
+ .and_then(|did| match tcx.bound_type_of(did).subst_identity().kind() {

ty::Adt(def, ..) => Some(def.did()),
...

136 files changed, 385 insertions(+), 262 deletions(-)

4

Creating a semantic patch: Step 1: remove irrelevant code

- let ty = self.infcx.tcx.type_of(self.mir_def_id());
+ let ty = self.infcx.tcx.bound_type_of(self.mir_def_id()).subst_identity();

- .and_then(|did| match tcx.type_of(did).kind() {
+ .and_then(|did| match tcx.bound_type_of(did).subst_identity().kind() {

136 files changed, 385 insertions(+), 262 deletions(-)

5

Creating a semantic patch: Step 2: pick a typical example

@@

@@

- self.infcx.tcx.type_of(self.mir_def_id())
+ self.infcx.tcx.bound_type_of(self.mir_def_id()).subst_identity()

Updates over 200 call sites.

6

Creating a semantic patch: Step 3: abstract over subterms using metavariables

@@
expression tcx, arg;
@@

- tcx.type_of(arg)
+ tcx.bound_type_of(arg).subst_identity()

Updates over 200 call sites.

7

Creating a semantic patch: Step 3: abstract over subterms using metavariables

@@
expression tcx, arg;
@@

- tcx.type_of(arg)
+ tcx.bound_type_of(arg).subst_identity()

Updates over 200 call sites.

7

Latest Developments

1. Addition of the CTL-VW engine. Which is the same engine as
Coccinelle For C.

a. Gives us a standard way (Computation Tree logic formulas) to
represent complex control flow paths

b. C control flow is simple. Conditional nodes only in the function level or
inside other conditionals (for the most part)

c. Rust, not so much

4

C CFGs

6

Rust CFG

In rust, if and while/loop statements are expressions. Therefore a control
flow branch/loop can occur anywhere.

7

Rust Madness

Snippet source: u/ZZaaaccc 8

Rust CFG

How to represent rust CFG from the Rust AST without remaking the
compiler?

11

Rust CFG

How to represent rust CFG from the Rust AST without remaking the
compiler?

12

Rust CFG

How to represent rust CFG from the Rust AST without remaking the
compiler?

For simple non-branching nodes:-

13

Rust CFG

How to design a Rust CFG from the Rust AST without making remaking the
compiler?

14

Rust CFG

How to design a Rust CFG from the Rust AST without making remaking the
compiler?

Note: The CFG nodes are actually the AST
types of the tree 15

Rust CFG

How to design a Rust CFG from the Rust AST without making remaking the
compiler?

But what about branching instructions?

16

How to design a Rust CFG from the Rust AST without making remaking the
compiler?

But what about branching instructions?

Rust CFG

17

Rust CFG

How to represent rust CFG from the Rust AST without making remaking the
compiler?

18

Rust CFG

Similarly we can define CFGs for loops and return statements.

Loops Jump statements

19

Problems with this approach

1. HUGE Control Flow Graphs.
2. All the CFGs shown in the slides are highly compressed. This is how a

CFG looks for

20

Problems with this approach

1. HUGE Control Flow Graphs.
2. All the CFGs shown in the slides are highly compressed. This is how a

CFG looks for

21

Problems with this approach

1. HUGE Control Flow Graphs.

Solution :- Compress nodes with nodes with only one child.

22

Problems with this approach

2. Representation of metavariables

Special edges for metavariables and blocks.

23

Problems with this approach

2. Representation of metavariables

Special edges for metavariables and blocks.

24

Problems with this approach

2. Representation of metavariables

Special edges (sibling) for metavariables and blocks.

25

Problems with this approach

2. Representation of metavariables

Special edges (sibling) for metavariables and blocks.

26

Other points

CTL formulas are very verbose and hard to read in their current
state. For example…

27

Other points

CTL formulas are very verbose and hard to read in their current
state

[EXPR_STMT] & (AX ([CALL_EXPR] & (AX (f & (AX ([ARG_LIST] & (AX (Exnk l1 ((
& (Paren(l1)) & (AX (Ex x (x & (AX ()(M) & (Paren(l1)) & (AX (; & (AX (
A[NOT ([EXPR_STMT] & (AX ([CALL_EXPR] & (AX (f & (AX ([ARG_LIST] & (AX
(Exnk l1 ((& (Paren(l1)) & (AX (Ex x (x & (AX ()(M) & (Paren(l1)) & (AX (;))))) OR
After))))))))))) OR [EXPR_STMT] & (AX ([CALL_EXPR] & (AX (Ex _v (g) & (AX
([ARG_LIST] & (AX (Exnk l1 (Ex _v (() & (Paren(l1)) & (AX (Ex _v (x) & (AX (Ex _v
()(M)) & (Paren(l1)) & (AX (Ex _v (;))))) OR After)))))))))))) U [EXPR_STMT] & (AX
([CALL_EXPR] & (AX (Ex _v (g modif) & (AX ([ARG_LIST] & (AX (Exnk l1 (Ex _v ((
modif) & (Paren(l1)) & (AX (Ex _v (x modif) & (AX (Ex _v ()(M) modif) & (Paren(l1)) &
(AX (Ex _v (; modif))))) OR After)))))))))))]))))))) OR After)))))))))))

28

Other points

CTL formulas are very verbose and hard to read in their current
state

Thankfully the CfR user
does not have to deal
with CTL formulas :)

29

Latest Developments

Ellipses (…)
a. The ellipses operator
b. Matches any control flow path connecting two nodes
c. Helpful for when we don’t care about intermediate statements
d. Finds all paths by default

30

Latest Developments

Ellipses (…)
a. The ellipses operator
b. Matches any control flow path connecting two nodes
c. Helpful for when we don’t care about intermediate statements
d. Finds all paths by default

31

Latest Developments

Ellipses (…)

32

Latest Developments

Disjunctions
1. Conditional Matching
2. Matches either one of the branches

33

Disjunctions

Example
write() needs to be flushed always,

writeln() is self flushing.

34

Disjunctions

35

Disjunctions

WHAT’S NEW?????

36

Disjunctions

Disjunction branches can now be anything as long as the whole patch
makes sense.

37

Disjunctions

Disjunction branches can now be anything as long as the whole patch
makes sense.

Previously

38

Disjunctions

Disjunction branches can now be anything as long as the whole patch
makes sense.

Previously
* For the most part 39

Disjunctions

Previously on Coccinelle For Rust…

1. Disjunctions -> If statements

45

Disjunctions

Non-expression disjunctions

46

Previously on Coccinelle For Rust…

1. Disjunctions -> If statements

Problem: Cannot parse anything other than expressions.

Disjunctions

47

HAIL OUR SAVIOUR :- MACROS
1. Rust macros are very versatile. There are a few types of declarative

rust macros :-
a. MacroDef
b. MacroCall
c. MacroType
d. …?

2. If we use macros to wrap our disjunctions, not only can we parse them,
but also get what should be in their place.

Disjunctions

48

Disjunctions

What we do now :-

49

Disjunctions

1. Parse disjunctions

2. Get all possible paths as a string but keep the
disjunction information

3. Make sure that these branches are parsable

4. Parse the newly formed branches

5. Merge all the branches into one disjunction

What we do now :-

51

Disjunctions

Note:-

There are still cases where disjunctions cannot be used. For example :-

52

Latest Developments

Disjunctions

Still a work in progress :)

53

Remaining Challenges

Macros
1. They are a pain in the AST
2. CfR uses rustfmt
3. rustfmt does not format macros and mods properly
4. Ambiguity as to what to do.

Parallelization
1. Limited parallelization capabilities due to the thread-unsafe structure

of rowan syntax nodes.

54

Possible applications?

Interfacing C-Rust Code

a. Changes in C side of the code require the corresponding
Rust code to be updated.

b. Questions in the community as to who should make the
changes across languages.

Coccinelle For Rust could potentially act as a tool which
automates the changes from C to Rust. This reduces the burden
on both C and Rust developers.

56

Possible applications?

57

Possible applications?

58

Possible applications?

59

Some examples of the diff description -

1. arg2 is never NULL
2. struct foo *arg1 can only be dereferenced once
3. Size of `struct foo` has changed to 32 bytes from 48 bytes.
4. More…

What kind of C-Rust interface changes are
most common in the linux kernel and
would benefit most from automation?

Support

60

Thank you Collabora for supporting the development of Coccinelle For Rust!

COCCINELLE FOR RUST LINKS
1. Main Page - https://rust-for-linux.com/coccinelle-for-rust

2. Gitlab Page -
https://gitlab.inria.fr/coccinelle/coccinelleforrust/-/tree/main?ref_type=hea
ds (Please use the ctl2 branch, as per the link)

3. Previous Talks -
https://gitlab.inria.fr/coccinelle/coccinelleforrust/-/blob/ctl2/talks/lpc23.pdf
?ref_type=heads

4. Contact: julia.lawall@inria.fr

 tathagata.roy1278@gmail.com

61

	c022706254af6ec520f764aa9dd10521f62525da3f5d7d9a76d3b87aa4c44493.pdf
	e538516b82be6bba50603efc93a3a596af7424256cc4159375422d9392ed81a5.pdf
	c022706254af6ec520f764aa9dd10521f62525da3f5d7d9a76d3b87aa4c44493.pdf

