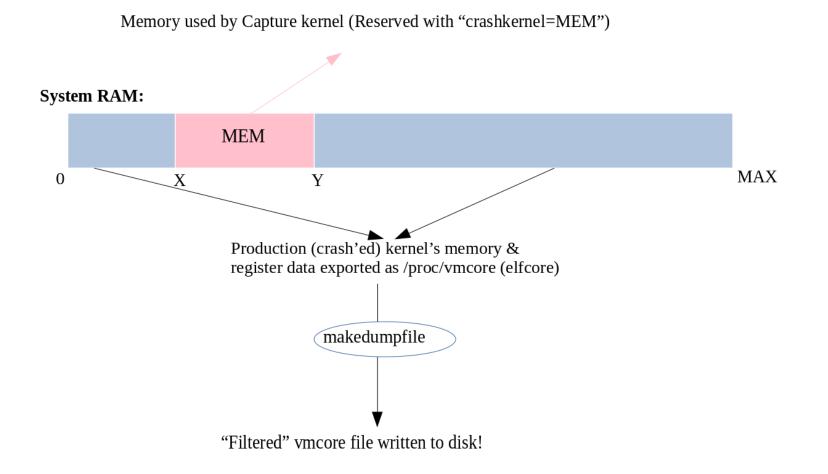
Firmware-Assisted Dump, a kdump alternative to kernel dump capturing mechanism

Hari Bathini, Linux Technology Center, IBM

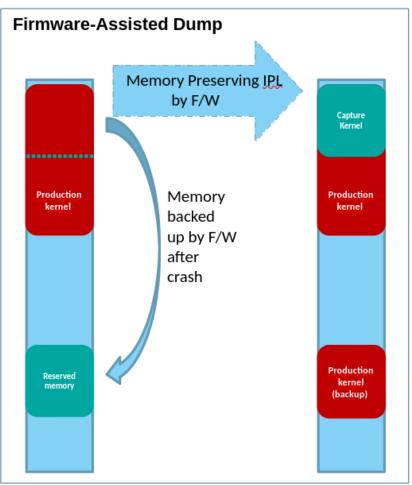


Agenda

- Overview of kdump
- Advantages and inherent issues with kdump
- A brief introduction to fadump
- Advantages and concerns with fadump
- Concerns mitigated so far
- How fadump fares now
- One last concern
- What it takes to enable fadump support

Overview of kdump

- First Crash Dump solution accepted in mainline.
- Relies on kexec a kernel to kernel bootloader.



Advantages with kdump

- Special initrd and cmdline to reduce capture kernel memory footprint.
- Flexibility to choose dump target device.
- Scope in userspace to filter the vmcore before offloading to disk.

- Dependent on crashed kernel to kexec into kdump kernel.
- Devices are in inconsistent state.
- Prone to driver initialization failures in capture kernel.
- Buggy driver code can result in failure to offload vmcore to the dump target.
 - every new device needs to support soft reset.
 - driver needs to know how to do soft reset.
- Brief service lapse to refresh elfcorehdr after cpu/memory hot add/remove operations.

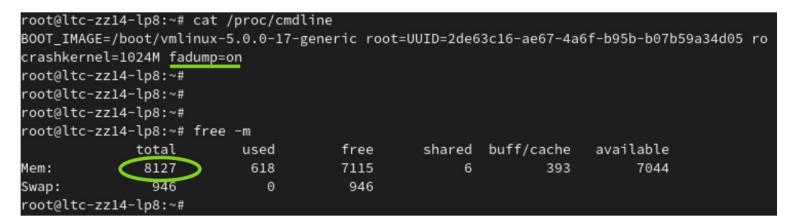
- Crash Dump solution accepted in mainline in kernel 3.4
- Kernel registers with f/w for fadump
 - on crash, a hook in kernel crash path informs f/w about the kernel crash.
 - f/w quiesces CPUs (except crashing CPU) and saves register state.
 - f/w backs up memory regions requested.
 - f/w flags off a memory preserved boot.
 - f/w notifies that the boot is after crash.
 - kernel preserves context and exports /proc/vmcore file.
 - fadump reuses kdump flow from here:
 - filtering vmcore
 - offloading to disk
 - analyzing the vmcore with gdb/crash/drgn

Advantages with fadump

- Flexibility to choose dump target device (kdump).
- Scope in userspace to filter the vmcore before offloading to disk (kdump).
- Memory preserved by f/w.
- Boots like regular kernel (reset).
 - loaded with a fresh copy of the kernel.
 - PCI and I/O devices are fully reset.

- Does not have special initrd for capture kernel boot and no existing provision to pass additional parameters
 - as capture kernel boots via the regular boot loader just like production kernel.
 - kexec loads the special initrd and cmdline for kdump.
- Capture kernel for fadump has relatively higher memory footprint.
- Brief service lapse to update elfcorehdr after memory hot add/remove operations.

Does not have special initrd for capture kernel


- Uses the same initrd used for production kernel boot
 - initrd built for production kernel is not ideal for fadump capture kernel.
- A special out-of-tree dracut module to pack initrd for capture kernel
 - fadump initrd is embedded into the production kernel initrd.
 - unpacked only while booting fadump capture kernel.
- Using special initrd scripts for fadump capture kernel ensures
 - no interference of fadump optimizations in production kernel boot.
 - no overhead in fadump capture kernel.

No existing provision to pass additional parameters

- As fadump relies on regular boot loader
 - passing additional parameters can be tricky, unlike kdump.
 - leverage firmware's memory preserving boot feature.
 - locate a memory region and pass arguments via this region between the kernels.
 - https://lore.kernel.org/all/20240509115755.519982-1-hbathini@linux.ibm.com/
- This helps minimize the memory footprint of fadump capture kernel.
- Also, allows disabling unnecessary/troublesome features/components/drivers.

Relatively larger memory reservation requirement

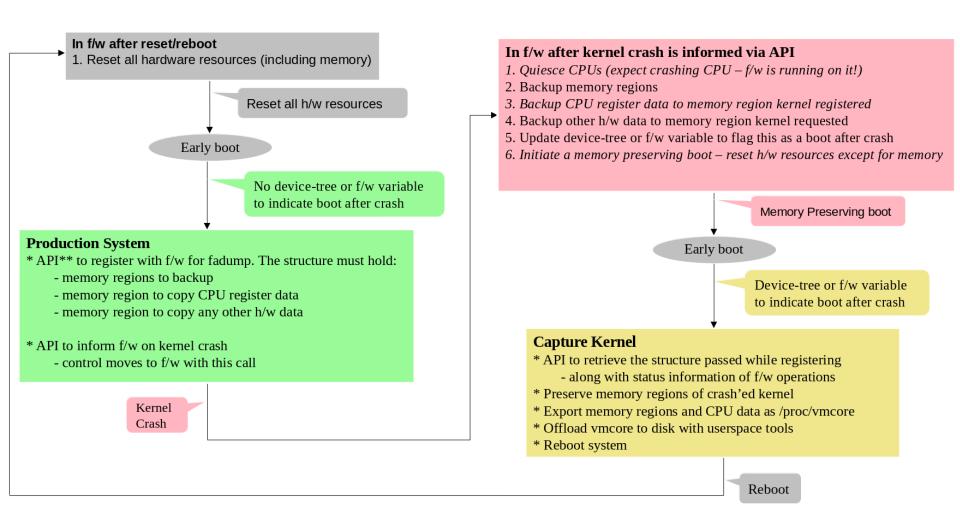
- Use CMA for memory reservation
 - this makes the memory reserved for fadump available for userpages
 - So, except for some metadata, all memory reserved for fadump is now available via CMA.
 - assumes vmcore is filtered for only kernel pages (default).

root@ltc∙	-zz14-lp8:~# cat	/proc/cmdl	ine				
BOOT_IMA	GE=/boot/vmlinux∙	-5.0.0-17-g	eneric root	=UUID=2de6	3c16-ae67-4a	6f-b95b-b07b59a	a34d05 ro
crashker	nel=1024M fadump:	=nocma					
root@ltc	-zz14-lp8:~#						
root@ltc	-zz14-lp8:~#						
root@ltc	-zz14-lp8:~#						
root@ltc	-zz14-lp8:~# free	e —m					
	total	used	free	shared	buff/cache	available	
Mem:	7103	619	6115	6	368	6032	
Swap:	946	Θ	946				
root@ltc	-zz14-lp8:~#						

https://lore.kernel.org/all/153475298147.22527.9680437074324546897.stgit@jupiter.in.ibm.com/

Service lapse after memory hot add/remove operations

- On Memory hot add/remove operations
 - elfcorehdr used to describe the crash'ed system (/proc/vmcore) needs update.
 - elfcorehdr is updated by re-registering.
- Instead, create the elfcorehdr in capture kernel boot
 - by snooping through the memblock list during early boot in capture kernel.
 - https://lore.kernel.org/all/20240422195932.1583833-1-sourabhjain@linux.ibm.com/
 - eliminates the need to reload service after memory hot add/remove operations.
 - with this change, fadump is **always ready** to capture a kernel dump.


Concern	Resolution			
Does not have special initrd for capture kernel boot	 Special initrd for capture kernel built into production kernel initrd This special initrd is activated only if a f/w variable indicates fadump is active 			
No existing provision to pass additional parameters	 A dedicated memory region for passing additonal parameters Production kernel sets up this region Capture kernel reads from this region during early boot and updates cmdline 			
Relatively larger memory reservation requirement	 Except for metadata, CMA is used for memory reservation This makes the memory available for production kernel use Effectively almost all memory is available for production kernel use 			
Service lapse after memory hot add/remove operations	 elfcorehdr generation delayed till capture kernel boots Eliminates the need to re-register on memory hot add/remove operations Snoops memblock list in capture kernel to generate elfcorehdr fadump is always ready to serve a crash with this change 			

- What is the right memory size to reserve for capture kernel?
 - both kdump and fadump face this challenge.
 - memory requirement for capture kernel is a moving target
 - it depends on
 - build options used
 - features enabled
 - devices attached
 - services used
 - approach..
 - reserve fixed memory for any system configuration.
 - reclaim memory in capture kernel on-demand.
 - the idea is to build capability in capture kernel to free up non-kernel memory during early boot.
 - assumes vmcore is filtered for kernel pages only (default).
 - the key reason to solve the memory reservation problem is to **simplify** fadump configuration in **deployments**.

Advantages with fadump

- Flexibility to choose dump target device (kdump).
- Scope in userspace to filter the vmcore before offloading to disk (kdump).
- Memory preserved by f/w.
- Boots like regular kernel (reset)
 - loaded with a fresh copy of the kernel.
 - PCI and I/O devices are fully reset.
- Special initrd for fadump
 - ensures no overhead of production kernel configurations.
- Passing additional parameters
 - helps reduce memory footprint and disable troublesome components.
- All system memory available for production kernel use
 - with CMA reservation for fadump.
- Always ready crash recovery support
 - with elfcorehdr prepared in capture kernel.
- ... and fixed memory reservation ...
 - by reclaiming memory in capture kernel

** API mentioned above is to refer to the calling interface from kernel to firmware.

Legal Statement

- This work represents the view of the author and does not necessarily represent the view of IBM.
- IBM and IBM(logo) are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other countries.
- Linux is a registered trademark of Linus Torvalds
- Other company, product, and service names may be trademarks or service marks of others.

Thanks!