Firmware-Assisted Dump, a kdump alternative to
kernel dump capturing mechanism

Hari Bathini, Linux Technology Center, IBM

LINUX PLUMBERS CONFERENCE | sept o200

Agenda

* Overview of kdump

* Advantages and inherent issues with kdump
* A brief introduction to fadump

* Advantages and concerns with fadump

* Concerns mitigated so far

* How fadump fares now

* One last concern

* What it takes to enable fadump support

Overview of kdump

* First Crash Dump solution accepted in mainline.

* Relies on kexec — a kernel to kernel bootloader.

Memory used by Capture kernel (Reserved with “crashkernel=MEM”)

System RAM:
MEM

0 X Y MAX

Production (crash’ed) kernel’s memory &
register data exported as /proc/vmcore (elfcore)

(makedumpfile

\/

“Filtered” vmcore file written to disk!

Advantages with kdump

* Special initrd and cmdline to reduce capture kernel memory footprint.
* Flexibility to choose dump target device.

* Scope in userspace to filter the vincore before offloading to disk.

Inherent issues with kdump

* Dependent on crashed kernel to kexec into kdump kernel.
* Devices are in inconsistent state.
* Prone to driver initialization failures in capture kernel.

* Buggy driver code can result in failure to offload vimcore to the dump target.
- every new device needs to support soft reset.
— driver needs to know how to do soft reset.

* Brief service lapse to refresh elfcorehdr after cpu/memory hot add/remove operations.

Firmware-assisted dump (fadump)

* Crash Dump solution accepted in mainline in kernel 3.4

* Kernel registers with f/w for fadump

* on crash, a hook in kernel crash path informs f/w about the kernel crash.
* f/w quiesces CPUs (except crashing CPU) and saves register state.

* f/w backs up memory regions requested.
* f/w flags off a memory preserved boot.
* f/w notifies that the boot is after crash.
* kernel preserves context and exports
/proc/vimcore file.
* fadump reuses kdump flow from here:
* filtering vimcore
* offloading to disk
* analyzing the vimcore with gdb/crash/drgn

Firmware-Assisted Dump

: by F/W

Brpducties Memory
backed

up by F/W

after

crash

~ Memory Preserving IPL

pr—

Production
kemel

Production
kernel
{backup)

Advantages with fadump

Flexibility to choose dump target device (kdump).
* Scope in userspace to filter the vincore before offloading to disk (kdump).

* Memory preserved by f/w.

Boots like regular kernel (reset).
* loaded with a fresh copy of the kernel.
* PCI and I/O devices are fully reset.

Concerns with fadump

* Does not have special initrd for capture kernel boot and no existing provision to pass additional
parameters
* as capture kernel boots via the regular boot loader just like production kernel.
* kexec loads the special initrd and cmdline for kdump.

* Capture kernel for fadump has relatively higher memory footprint.

* Brief service lapse to update elfcorehdr after memory hot add/remove operations.

Does not have special initrd for capture kernel

* Uses the same initrd used for production kernel boot
* initrd built for production kernel is not ideal for fadump capture kernel.

* A special out-of-tree dracut module to pack initrd for capture kernel
* fadump initrd is embedded into the production kernel initrd.
* unpacked only while booting fadump capture kernel.

* Using special initrd scripts for fadump capture kernel ensures
* no interference of fadump optimizations in production kernel boot.
* no overhead in fadump capture kernel.

No existing provision to pass additional parameters

* As fadump relies on regular boot loader
* passing additional parameters can be tricky, unlike kdump.
* leverage firmware’s memory preserving boot feature.
* locate a memory region and pass arguments via this region between the kernels.
* https://lore.kernel.org/all/20240509115755.519982-1-hbathini@linux.ibm.com/

* This helps minimize the memory footprint of fadump capture kernel.

* Also, allows disabling unnecessary/troublesome features/components/drivers.

https://lore.kernel.org/all/20240509115755.519982-1-hbathini@linux.ibm.com/

Relatively larger memory reservation requirement

* Use CMA for memory reservation
* this makes the memory reserved for fadump available for userpages
* So, except for some metadata, all memory reserved for fadump is now available via CMA.
* assumes vmcore is filtered for only kernel pages (default).

root@ltc-zz14-1p8:~# cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinux-5.0.0-17-generic root=UUID=2de63cl6-ae67-4a6f-b95b-b07b59a34d05 ro
crashkernel=1024M fadume=on
root@ltc-zz14-1p8:~#
root@ltc-zz14-1p8:~#
root@ltc-zz14-1p8:~#
root@ltc-zz14-1p8:~# free -m
total used shared buff/cache available

Mem: 618 6 393 7044
Swap: 946 (0]

root@ltc-zz14-1p8:~#

root@ltc-zz14-1p8:~# cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinux-5.0.0-17-generic root=UUID=2de63cl6-ae67-4a6f-b95b-b07b59234d05
crashkernel=1024M fadump=nocma
root@ltc-zz14-1p8:~#
root@ltc-zz14-1p8:~#
root@ltc-zz14-1p8:~#
root@ltc-zz14-1p8:~# free -m
total used shared buff/cache available
Mem: 7103 619 6 368 6032
Swap: 946 0
root@ltc-zz14-1p8:~# I

https://lore.kernel.org/all/153475298147.22527.9680437074324546897 .stgit@jupiter.in.ibm.com/

f

Service lapse after memory hot add/remove operations

* On Memory hot add/remove operations

elfcorehdr used to describe the crash’ed system (/proc/vimcore) needs update.
elfcorehdr is updated by re-registering.

* Instead, create the elfcorehdr in capture kernel boot

by snooping through the memblock list during early boot in capture kernel.
https://lore.kernel.org/all/20240422195932.1583833-1-sourabhjain@linux.ibm.com/
eliminates the need to reload service after memory hot add/remove operations.

with this change, fadump is always ready to capture a kernel dump.

https://lore.kernel.org/all/20240422195932.1583833-1-sourabhjain@linux.ibm.com/

How fadump fares now

Concern

Resolution

Does not have special initrd for capture kernel boot

- Special initrd for capture kernel built into production kernel initrd
- This special initrd is activated only if a f/w variable indicates fadump is active

No existing provision to pass additional parameters

- A dedicated memory region for passing additonal parameters
- Production kernel sets up this region
- Capture kernel reads from this region during early boot and updates cmdline

Relatively larger memory reservation requirement

- Except for metadata, CMA is used for memory reservation
- This makes the memory available for production kernel use
- Effectively almost all memory is available for production kernel use

Service lapse after memory hot add/remove operations

- elfcorehdr generation delayed till capture kernel boots

- Eliminates the need to re-register on memory hot add/remove operations
- Snoops memblock list in capture kernel to generate elfcorehdr

- fadump is always ready to serve a crash with this change

One last concern

* What is the right memory size to reserve for capture kernel?

* both kdump and fadump face this challenge.

* memory requirement for capture kernel is a moving target

* it depends on
* build options used
* features enabled
* devices attached
* services used

* approach..
* reserve fixed memory for any system configuration.
* reclaim memory in capture kernel on-demand.
* the idea is to build capability in capture kernel to free up non-kernel memory during early boot.
* assumes vmcore is filtered for kernel pages only (default).

* the key reason to solve the memory reservation problem is to simplify fadump configuration in
deployments.

Advantages with fadump

f

Flexibility to choose dump target device (kdump).
Scope in userspace to filter the vimcore before offloading to disk (kdump).
Memory preserved by f/w.

Boots like regular kernel (reset)
* loaded with a fresh copy of the kernel.
* PCI and I/O devices are fully reset.

Special initrd for fadump
* ensures no overhead of production kernel configurations.

Passing additional parameters
* helps reduce memory footprint and disable troublesome components.

All system memory available for production kernel use
* with CMA reservation for fadump.

Always ready crash recovery support
* with elfcorehdr prepared in capture kernel.

... and fixed memory reservation ...
* by reclaiming memory in capture kernel

What it takes to support fadump

In fiw after reset/ireboot
1. Reset all hardware resources (including memory)

Reset all h/w resources

Early boot

No device-tree or f/w variable
to indicate boot after crash

Production System

* API** to register with f/w for fadump. The structure must hold:
- memory regions to backup
- memory region to copy CPU register data
- memory region to copy any other h/w data

* API to inform f/w on kemel crash
- control moves to f/w with this call

Kernel
Crash

In f/w after kernel crash is informed via API

1. Quiesce CPUs (expect crashing CPU — f/w is running on it!)

2. Backup memory regions

3. Backup CPU register data to memory region kernel registered

4. Backup other h/w data to memory region kernel requested

5. Update device-tree or f/w variable to flag this as a boot after crash

6. Initiate a memory preserving boot — reset h/w resources except for memory

|
l Memory Preserving boot

Early boot

Device-tree or f/w variable
to indicate boot after crash

Capture Kernel
* API to retrieve the structure passed while registering
- along with status information of f/w operations
* Preserve memory regions of crash’ed kernel
* Export memory regions and CPU data as /proc/vimcore
* Offload vmcore to disk with userspace tools
* Reboot system

Reboot

** API mentioned above is to refer to the calling interface from kernel to firmware.

f

Legal Statement

e This work represents the view of the author and does not necessarily represent the view of
IBM.

e |BM and IBM(logo) are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

e Linux is a registered trademark of Linus Torvalds

e Other company, product, and service names may be trademarks or service marks of others.

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

