


Multi-Gen LRU Updates



Multi-Gen LRU (MGLRU)

● Alternative LRU implementation for page aging & reclaim
● Key features

○ Organize pages into multi-tier, multi-generational LRUs based on access recency
■ Each LRU generation has a birth timestamp, which allows recency comparison across LRUs

○ Optimize page generation updates via efficient forward page table scans
○ Simplify reclaim between anon and file LRUs using a refault/eviction based PID controller

● Current status
○ Merged into 6.1 two years ago
○ Enabled by default in major distros

■ Debian, Fedora, Ubuntu, Android, ChromeOS



Adopting MGLRU in Google Production

● Historically Google production runs kstaled [1] for time-based proactive aging & reclaim
○ kstaled scans in physical page order with rmap lookups, thus it’s cache unfriendly

● As a first step, added small wrappers so MGLRU can emulate kstaled-like time-based aging and reclaim
○ Periodic aging and per-job working set reporting
○ Page age based reclaim

● This is now running in a portion of Google production
○ Achieved same memory savings as kstaled, with 5x less CPU overhead

● Extended MGLRU with efficient KVM secondary MMU aging [2]
○ Scan secondary MMU during aging (vs at eviction only) for more accurate working set reporting
○ Lockless scan can reduce KVM MMU lock contention by ~85% [3]

[1] https://lore.kernel.org/lkml/1317170947-17074-1-git-send-email-walken@google.com/
[2] https://lore.kernel.org/all/20240724011037.3671523-11-jthoughton@google.com/ 
[3] https://lore.kernel.org/r/20230526234435.662652-1-yuzhao@google.com

https://lore.kernel.org/lkml/1317170947-17074-1-git-send-email-walken@google.com/
https://lore.kernel.org/all/20240724011037.3671523-11-jthoughton@google.com/
https://lore.kernel.org/r/20230526234435.662652-1-yuzhao@google.com
https://lore.kernel.org/lkml/1317170947-17074-1-git-send-email-walken@google.com/
https://lore.kernel.org/all/20240724011037.3671523-11-jthoughton@google.com/
https://lore.kernel.org/r/20230526234435.662652-1-yuzhao@google.com


Known MGLRU Problems

● OOM kills happen if writeback falls behind
○ There is a fix (“wake up flushers conditionally to avoid cgroup OOM”) posted on the mailing list
○ Further work needed in this area:

■ Smarter decisions about whether to wake up
■ Smarter throttling

● MGLRU has kconfig constraints to ensure enough spare page flag bits
○ depends on 64BIT || !SPARSEMEM || SPARSEMEM_VMEMMAP
○ MGLRU needs 3 page flag bits at minimum
○ Proposal: Store PG_active, PG_unevictable (and possibly PG_swapback) in folio->lru low bits

● Solicit feedback on other problems

https://lore.kernel.org/r/20240829102543.189453-1-jingxiangzeng.cas@gmail.com


New Use Cases

● Workingset reporting [1] for proactive reclaim and aging
○ Generalization of active/inactive counts to arbitrary time intervals
○ Per-cgroup, per-NUMA node, per swapped-backed/file-backed
○ Working on benchmarks and ballooning use cases as well

● Different heuristics for different types of workloads
○ Aging / reclaim policies can be implemented in BPF, allowing MGLRU to be customized
○ Workloads that aren’t well supported by the out-of-the-box MGLRU today can use it
○ Especially relevant for hyperscaler adoption of MGLRU

[1] https://lore.kernel.org/linux-mm/20240813165619.748102-1-yuanchu@google.com/ 

https://lore.kernel.org/linux-mm/20240813165619.748102-1-yuanchu@google.com/
https://lore.kernel.org/linux-mm/20240813165619.748102-1-yuanchu@google.com/

