
TAO: THP Allocator 
Optimizations
Yu Zhao <yuzhao@google.com>



Fun facts
• Some CPU vendor is planning to remove 4KB page size support in the next decade.
• macOS on Apple silicon uses 16KB base page size.
• Windows on IA-64 used 8KB base page size.

At Google:
• Our POWER9 servers used 64KB base page size.
• We are experimenting with 16KB base page size on Android.

https://cloud.google.com/blog/products/gcp/introducing-zaius-google-and-rackspaces-open-server-running-ibm-power9
https://source.android.com/docs/core/architecture/16kb-page-size/16kb


Proposition
4KB page size is suboptimal for modern userspace:

• Some archs, e.g., x86_64, doesn’t support other base page sizes.
• Switching to a larger base page size, e.g., on arm64., breaks ABI.

A forward-looking OS would offer the opportunity to favor larger 
logical pages over 4KB base pages:

• Such an OS would be able to treat 4KB page size as a legacy h/w 
feature, but at the same time,

• It would not require larger base page size support from h/w or 
break ABI.

Image source: https://en.wikipedia.org/wiki/I386



Rationale
Favoring THPs over 4KB pages brings:

• Better overall performance, and,
• Less metadata overhead by, e.g., HVO or memdesc.

4KB page allocations are fairly penalized because:
• They are the source of fragmentation, and,
• Defragmentation comes with a price, e.g., reclaim and/or compaction.

Fragmentation can become irreversible unless it’s contained.



A different economy
The aforementioned proposition is the cornerstone of TAO, i.e., it explores the opposite 
of the existing economy:

Existing TAO

Allocation
4KB page Relatively cheap Relatively expensive

THP Relatively expensive Relatively cheap

Conversion
THP -> 4KB pages Relatively cheap Relatively expensive

4KB pages -> THP Relatively expensive Relatively cheap



Fungibility
Fungibility makes conversion between 4KB pages and THPs flexible.

• The conversion is required to maintain the ABI.
• Rather than biases against THPs, TAO biases against 4KB pages.
• Recovering is mainly designed for 1GB THPs, since copying 1GB data is obviously 

unaffordable for many potential use cases.

4KB pages -> THP THP -> 4KB pages

In place (when possible) Recover (TAO) Split (existing)

Out of place (when possible) Collapse (existing) Shatter (TAO)



Allocation-time hints
__GFP_MOVABLE is stronger than __GFP_COMP because the former can make the latter 
possible (by compaction) but not the vice versa.

Ideal fallback order:
Total weight = 3: Movable compound (most desirable)
Total weight = 2: Movable
Total weight = 1: Unmovable compound
Total weight = 0: Unmovable (least desirable)

Order 0 Compound (base weight = 1)

Movable (base weight = 2) 2 1 + 2 = 3

Unmovable 0 1



Runtime hints
Lifetimes of unmovable allocations can be statistically estimated by sampling, e.g.,

• Sample an allocation site by recording the page and timestamp.
• Calculate the lifetime of the sample when freeing the page.
• Group unmovable allocations by their estimated lifetimes.

This is another ongoing research project (Tetris) at Google.



Interoperability with userspace
Currently, fragmentation is only observable (or measured) systemwide:

• A low priority task can make a high priority task suffer.
• Per-memcg observability (or ideally limit) would be helpful.

THP fungibility needs to be a cooperation between the userspace and kernel:
• To account for additional runtime behaviors like hotness and lifetime of allocation by, e.g., 

Profile-Guided Heap Optimization (PGHO).
• To better utilize physical contiguity in a system, e.g., making 1GB THPs possible by 

additional madvise() flags.



Memory partitioning
Containing (by hardwalling) 4KB pages and THPs in two 
separate partitions can:

• Provide guaranteed THP coverage, and,
• Apply differential pressure, i.e., higher pressure to the 4KB 

page partition.

Image source: https://en.wikipedia.org/wiki/High-occupancy_vehicle_lane

Memory utilization System throughput

Mixed (existing) High Low

Separate (TAO) Low High



Sizing and resizing
The sizes of the 4KB page and THP partitions can be based on:

• Global min/max (new knobs) of the THP partition, and,
• Per-memcg min/max (new knobs) of the allotted THP partition.

The per-memcg min/max prevent priority inversion, i.e., a low priority task consuming 
more THPs than a high priority task.

Resizing relies on hot removal/plug:
• Shrinking the THP partition (enlarging the 4KB page partition) is theoretically guaranteed.
• The opposite direction is best effort, but still likely to succeed (by Tetris).



Auto resizing and OOM kills
Auto resizing can be done based on memory pressure from respective partitions:

• Differential pressure is required to counteract fragmentation.
• Memory pressure in the 4KB page partition can optionally invoke the OOM killer even if 

the THP partition experiences no pressure.

For some platforms, (userspace-managed) OOM kills are not only affordable; 
oftentimes, they are preferred:

• Android LMKs of background apps.
• ChromeOS tab discard of background tabs.
• In Cloud (containerized), realtime jobs preempting batch jobs.



Preliminary results
Android (OPPO)

ChromeOS (Google)
4KB 32KB 32KB + TAO=30%

Tab switch time (ms) 111 105 (baseline) 95 (-10%)



Development history
• First attempted to reduce systemwide fragmentation – bunch of random hacks.
• Then attempted to isolate fragmentation between memcg – DEFRAG.
• Arrived at the aforementioned proposition – TAO.
• Still doing the research on estimating lifetimes of unmovable allocations – Tetris.



Related works
1. CMU/Meta’s zone-based Contiguitas.
2. OPPO’s pageblock-based 64KB large folio pool + dual LRU.
3. Google’s pageblock-based DEFRAG (DEcoupled Fragmentation-Resistant Allocation 

Groups) – basically a rewrite of the page allocator.
4. Google’s Tetris (estimate lifetimes of unmovable allocations) – a research project.

https://dl.acm.org/doi/pdf/10.1145/3579371.3589079
https://lore.kernel.org/CAGsJ_4w2zFBSabS97Pnnt59TjC3z48ZkwLoskXniq1puzK0O=Q@mail.gmail.com/
https://lore.kernel.org/CAOUHufbGLAQaZQns+KJRvX5e0OL0J51BSdQgZr8fOfc5sZ1PKw@mail.gmail.com/

