
Towards Better
Memory Allocation
for Device Drivers

Petr Tesarik (SUSE)
<ptesarik@suse.com>

1

2

Simple Idea

3

Memory Zones by Physical Address

NORMAL

DMA32

DMA

4

Memory Zones by Physical Address

NORMAL

DMA32

DMA

CPU

Can access
everything

5

Memory Zones by Physical Address

NORMAL

DMA32

DMA

CPU

Can access
everything

32-bit
device

No access
above DMA32

6

Memory Zones by Physical Address

NORMAL

DMA32

DMA

CPU

Can access
everything

legacy
Intel 8237

No access
above DMA

7

Reality Strikes Back

8

Different Address Spaces

CPU device

CPU Physical
Address Space

Bus
Address Space

offset
applied
by host
bridge

9

It Gets Worse…

CPU

device 1

CPU Physical
Address Space

Bus Addr Space 1

offset 1
by bridge 1

Bus Addr Space 2

device 2
offset 2

by bridge 2

bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
 // Translate a CPU physical address to a bus address:
 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);

 // Does the CPU address even map to a bus address?
 if (dma_addr == DMA_MAPPING_ERROR)
 return false;

 // Good, we have a bus address. Now check if it is within limits:
 return dma_addr + size - 1 <=
 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}

10

What Address is OK for a Device?

static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, gfp_t gfp, bool allow_highmem)
{
 int node = dev_to_node(dev);
 struct page *page = NULL;
 u64 phys_limit;

 // Use a restricted pool if possible:
 if (is_swiotlb_for_alloc(dev))
 return dma_direct_alloc_swiotlb(dev, size);

 // Try to allocate from CMA, hoping for the best:
 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
 page = dma_alloc_contiguous(dev, size, gfp);

 // If CMA is in fact not suitable for this device, free the pages again and continue as if there was no CMA:
 if (page) {
 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
 (!allow_highmem && PageHighMem(page))) {
 dma_free_contiguous(dev, page, size);
 page = NULL;
 }
 }
…

11

How Buffers are Allocated

…
 // Allocate from the zoned buddy allocator:
again:
 if (!page)
 page = alloc_pages_node(node, gfp, get_order(size));
 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 // Bad luck? Free the freshly allocated pages!
 dma_free_contiguous(dev, page, size);
 page = NULL;

 // Try DMA32 if available and looks like it might help:
 if (IS_ENABLED(CONFIG_ZONE_DMA32) && phys_limit < DMA_BIT_MASK(64) && !(gfp & (GFP_DMA32 | GFP_DMA))) {
 gfp |= GFP_DMA32;
 goto again;
 }

 // Try DMA if available and we haven't tried yet:
 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
 goto again;
 }
 }
 return page;
}

12

How Buffers are Allocated (cont’d)

13

Memory Encryption Requirements

● SEV always requires DMA to unencrypted addresses.
● SME requires DMA to unencrypted addresses if the device does not support

DMA to addresses that include the encryption mask.
● Decrypting a memory range may block, so atomic allocations use coherent

pools:

– One coherent pool per zone, allocated from CMA or with the zoned buddy allocator

– Similar allocate/check/free loop over possible zones

14

Can We Do Better?

● Good

– Dedicated pools used only for atomic allocations

– Memory reclaim when low watermark is reached

– Pools automatically refilled during memory reclaim

● Bad

– Based on global CPU physical address limits, but each device is constrained within its own bus
address space

– Initialized at boot time (before all device constraints are known)

– No more than 3 zones can be used

15

What’s Good and Bad About Zones

● Dynamically created allocation groups

– Mapping of device constraints to physical addresses is known at device initialization time

– Each group defines an emergency pool of pages for atomic allocations

– Multiple devices can share a single group (more efficient than per-device pools)

– Initial “direct reclaim” when a new group is created

● Integrated with the buddy allocator

– Groups below high watermark are refilled while pages are walked during memory reclaim

● Supersede coherent pools

– Memory decrypted during reclaim

16

Ideas for a Replacement

Talk to me now!
Or write to me:
ptesarik@suse.com

17

Questions?

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15

